Quantitative Trading

Author: Xin Guo
Publisher: CRC Press
ISBN: 1498706495
Format: PDF, ePub
Download Now
The first part of this book discusses institutions and mechanisms of algorithmic trading, market microstructure, high-frequency data and stylized facts, time and event aggregation, order book dynamics, trading strategies and algorithms, transaction costs, market impact and execution strategies, risk analysis, and management. The second part covers market impact models, network models, multi-asset trading, machine learning techniques, and nonlinear filtering. The third part discusses electronic market making, liquidity, systemic risk, recent developments and debates on the subject.

Quantitative Trading

Author: Xin Guo
Publisher: CRC Press
ISBN: 1315354357
Format: PDF
Download Now
The first part of this book discusses institutions and mechanisms of algorithmic trading, market microstructure, high-frequency data and stylized facts, time and event aggregation, order book dynamics, trading strategies and algorithms, transaction costs, market impact and execution strategies, risk analysis, and management. The second part covers market impact models, network models, multi-asset trading, machine learning techniques, and nonlinear filtering. The third part discusses electronic market making, liquidity, systemic risk, recent developments and debates on the subject.

Quantitative Trading

Author: Xin Guo
Publisher: CRC Press
ISBN: 9781498706483
Format: PDF, Mobi
Download Now
The first part of this book discusses institutions and mechanisms of algorithmic trading, market microstructure, high-frequency data and stylized facts, time and event aggregation, order book dynamics, trading strategies and algorithms, transaction costs, market impact and execution strategies, risk analysis, and management. The second part covers market impact models, network models, multi-asset trading, machine learning techniques, and nonlinear filtering. The third part discusses electronic market making, liquidity, systemic risk, recent developments and debates on the subject.

Statistical Models and Methods for Financial Markets

Author: Tze Leung Lai
Publisher: Springer Science & Business Media
ISBN: 0387778276
Format: PDF, ePub
Download Now
The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

The Science of Algorithmic Trading and Portfolio Management

Author: Robert Kissell
Publisher: Academic Press
ISBN: 0124016936
Format: PDF, Kindle
Download Now
The Science of Algorithmic Trading and Portfolio Management, with its emphasis on algorithmic trading processes and current trading models, sits apart from others of its kind. Robert Kissell, the first author to discuss algorithmic trading across the various asset classes, provides key insights into ways to develop, test, and build trading algorithms. Readers learn how to evaluate market impact models and assess performance across algorithms, traders, and brokers, and acquire the knowledge to implement electronic trading systems. This valuable book summarizes market structure, the formation of prices, and how different participants interact with one another, including bluffing, speculating, and gambling. Readers learn the underlying details and mathematics of customized trading algorithms, as well as advanced modeling techniques to improve profitability through algorithmic trading and appropriate risk management techniques. Portfolio management topics, including quant factors and black box models, are discussed, and an accompanying website includes examples, data sets supplementing exercises in the book, and large projects. Prepares readers to evaluate market impact models and assess performance across algorithms, traders, and brokers. Helps readers design systems to manage algorithmic risk and dark pool uncertainty. Summarizes an algorithmic decision making framework to ensure consistency between investment objectives and trading objectives.

Quantitative Trading with R

Author: Harry Georgakopoulos
Publisher: Springer
ISBN: 1137437472
Format: PDF, ePub, Mobi
Download Now
Quantitative Finance with R offers a winning strategy for devising expertly-crafted and workable trading models using the R open source programming language, providing readers with a step-by-step approach to understanding complex quantitative finance problems and building functional computer code.

Modelling Financial Time Series

Author: Stephen J. Taylor
Publisher: World Scientific
ISBN: 9812770844
Format: PDF, Docs
Download Now
This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts.This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends.

Market Microstructure In Practice Second Edition

Author: Laruelle Sophie
Publisher: World Scientific
ISBN: 9813231149
Format: PDF, Docs
Download Now
This book exposes and comments on the consequences of Reg NMS and MiFID on market microstructure. It covers changes in market design, electronic trading, and investor and trader behaviors. The emergence of high frequency trading and critical events like the"Flash Crash" of 2010 are also analyzed in depth. Using a quantitative viewpoint, this book explains how an attrition of liquidity and regulatory changes can impact the whole microstructure of financial markets. A mathematical Appendix details the quantitative tools and indicators used through the book, allowing the reader to go further independently. This book is written by practitioners and theoretical experts and covers practical aspects (like the optimal infrastructure needed to trade electronically in modern markets) and abstract analyses (like the use on entropy measurements to understand the progress of market fragmentation). As market microstructure is a recent academic field, students will benefit from the book's overview of the current state of microstructure and will use the Appendix to understand important methodologies. Policy makers and regulators will use this book to access theoretical analyses on real cases. For readers who are practitioners, this book delivers data analysis and basic processes like the designs of Smart Order Routing and trade scheduling algorithms. In this second edition, the authors have added a large section on orderbook dynamics, showing how liquidity can predict future price moves, and how High Frequency Traders can profit from it. The section on market impact has also been updated to show how buying or selling pressure moves prices not only for a few hours, but even for days, and how prices relax (or not) after a period of intense pressure. Further, this edition includes pages on Dark Pools, Circuit Breakers and added information outside of Equity Trading, because MiFID 2 is likely to push fixed income markets towards more electronification. The authors explore what is to be expected from this change in microstructure. The appendix has also been augmented to include the propagator models (for intraday price impact), a simple version of Kyle's model (1985) for daily market impact, and a more sophisticated optimal trading framework, to support the design of trading algorithms. Contents: Monitoring the Fragmentation at Any ScaleUnderstanding the Stakes and the Roots of FragmentationOptimal Organizations for Optimal TradingAppendix A: Quantitative AppendixAppendix B: Glossary Readership: Graduate and research students of financial markets and quantitative finance, Regulators and policy makers, practitioners. Keywords: Market Microstructure;Finance;Financial Markets;Market Liquidity;Financial Regulation;MiFID;Reg NMS;ESMAReview: Reviews of the First Edition: “Lehalle and Laruelle bring [their] experience to bear on every aspect of the discussion, as well as deep quantitative understanding. The resulting book is a unique mixture of real market knowledge and theoretical explanation. There is nothing else out there like it, and this book will be a central resource for many different market participants.” Robert Almgren President and Cofounder of Quantitative Brokers, New York “Charles' and Sophie's book on markets microstructure will improve our knowledge and consequently help us to tweak these potentiometers. In promoting better education, this book is at the roots of restoring trust in the markets.” Philippe Guillot Executive Director, Markets Directorate Autorité des marchés financiers (AMF), Paris “This book pro

Stochastic Portfolio Theory

Author: E. Robert Fernholz
Publisher: Springer Science & Business Media
ISBN: 1475736991
Format: PDF, Kindle
Download Now
Stochastic portfolio theory is a mathematical methodology for constructing stock portfolios and for analyzing the effects induced on the behavior of these portfolios by changes in the distribution of capital in the market. Stochastic portfolio theory has both theoretical and practical applications: as a theoretical tool it can be used to construct examples of theoretical portfolios with specified characteristics and to determine the distributional component of portfolio return. This book is an introduction to stochastic portfolio theory for investment professionals and for students of mathematical finance. Each chapter includes a number of problems of varying levels of difficulty and a brief summary of the principal results of the chapter, without proofs.

Learning Quantitative Finance with R

Author: Dr. Param Jeet
Publisher: Packt Publishing Ltd
ISBN: 1786465256
Format: PDF, ePub, Docs
Download Now
Implement machine learning, time-series analysis, algorithmic trading and more About This Book Understand the basics of R and how they can be applied in various Quantitative Finance scenarios Learn various algorithmic trading techniques and ways to optimize them using the tools available in R. Contain different methods to manage risk and explore trading using Machine Learning. Who This Book Is For If you want to learn how to use R to build quantitative finance models with ease, this book is for you. Analysts who want to learn R to solve their quantitative finance problems will also find this book useful. Some understanding of the basic financial concepts will be useful, though prior knowledge of R is not required. What You Will Learn Get to know the basics of R and how to use it in the field of Quantitative Finance Understand data processing and model building using R Explore different types of analytical techniques such as statistical analysis, time-series analysis, predictive modeling, and econometric analysis Build and analyze quantitative finance models using real-world examples How real-life examples should be used to develop strategies Performance metrics to look into before deciding upon any model Deep dive into the vast world of machine-learning based trading Get to grips with algorithmic trading and different ways of optimizing it Learn about controlling risk parameters of financial instruments In Detail The role of a quantitative analyst is very challenging, yet lucrative, so there is a lot of competition for the role in top-tier organizations and investment banks. This book is your go-to resource if you want to equip yourself with the skills required to tackle any real-world problem in quantitative finance using the popular R programming language. You'll start by getting an understanding of the basics of R and its relevance in the field of quantitative finance. Once you've built this foundation, we'll dive into the practicalities of building financial models in R. This will help you have a fair understanding of the topics as well as their implementation, as the authors have presented some use cases along with examples that are easy to understand and correlate. We'll also look at risk management and optimization techniques for algorithmic trading. Finally, the book will explain some advanced concepts, such as trading using machine learning, optimizations, exotic options, and hedging. By the end of this book, you will have a firm grasp of the techniques required to implement basic quantitative finance models in R. Style and approach This book introduces you to the essentials of quantitative finance with the help of easy-to-understand, practical examples and use cases in R. Each chapter presents a specific financial concept in detail, backed with relevant theory and the implementation of a real-life example.