Quantum Computation and Quantum Information

Author: Michael A. Nielsen
Publisher: Cambridge University Press
ISBN: 1139495488
Format: PDF, ePub
Download Now
One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Quantum Computing Since Democritus

Author: Scott Aaronson
Publisher: Cambridge University Press
ISBN: 0521199565
Format: PDF
Download Now
Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.

An Introduction to Quantum Computing

Author: Phillip Kaye
Publisher: Oxford University Press
ISBN: 0198570007
Format: PDF, ePub, Mobi
Download Now
The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

Elements of Quantum Computation and Quantum Communication

Author: Anirban Pathak
Publisher: Taylor & Francis
ISBN: 1466517921
Format: PDF, Mobi
Download Now
While there are many available textbooks on quantum information theory, most are either too technical for beginners or not complete enough. Filling this gap, Elements of Quantum Computation and Quantum Communication gives a clear, self-contained introduction to quantum computation and communication. Written primarily for undergraduate students in physics, mathematics, computer science, and related disciplines, this introductory text is also suitable for researchers interested in quantum computation and communication. Developed from the author’s lecture notes, the text begins with developing a perception of classical and quantum information and chronicling the history of quantum computation and communication. It then covers classical and quantum Turing machines, error correction, the quantum circuit model of computation, and complexity classes relevant to quantum computing and cryptography. After presenting mathematical techniques frequently used in quantum information theory and some basic ideas from quantum mechanics, the author describes quantum gates, circuits, algorithms, and error-correcting codes. He also explores the significance and applications of two unique quantum communication schemes: quantum teleportation and superdense coding. The book concludes with various aspects of quantum cryptography. Exploring recent developments and open questions in the field, this text prepares readers for further study and helps them understand more advanced texts and journal papers. Along with thought-provoking cartoons and brief biographies of key players in the field, each chapter includes examples, references, exercises, and problems with detailed solutions.

Quantum Computing

Author: Eleanor G. Rieffel
Publisher: MIT Press
ISBN: 0262015064
Format: PDF, Kindle
Download Now
A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

Problems and Solutions in Quantum Computing and Quantum Information

Author: Willi-Hans Steeb
Publisher: World Scientific Publishing Company
ISBN: 9813108215
Format: PDF, ePub, Docs
Download Now
Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton operator are included. The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained.

Classical and Quantum Computation

Author: Alexei Yu. Kitaev
Publisher: American Mathematical Soc.
ISBN: 0821832298
Format: PDF, Docs
Download Now
This book presents a concise introduction to an emerging and increasingly important topic, the theory of quantum computing. The development of quantum computing exploded in 1994 with the discovery of its use in factoring large numbers--an extremely difficult and time-consuming problem when using a conventional computer. In less than 300 pages, the authors set forth a solid foundation to the theory, including results that have not appeared elsewhere and improvements on existing works. The book starts with the basics of classical theory of computation, including NP-complete problems and the idea of complexity of an algorithm. Then the authors introduce general principles of quantum computing and pass to the study of main quantum computation algorithms: Grover's algorithm, Shor's factoring algorithm, and the Abelian hidden subgroup problem. In concluding sections, several related topics are discussed (parallel quantum computation, a quantum analog of NP-completeness, and quantum error-correcting codes). This is a suitable textbook for a graduate course in quantum computing. Prerequisites are very modest and include linear algebra, elements of group theory and probability, and the notion of an algorithm (on a formal or an intuitive level). The book is complete with problems, solutions, and an appendix summarizing the necessary results from number theory.

Quantum Information Theory

Author: Mark M. Wilde
Publisher: Cambridge University Press
ISBN: 1316813304
Format: PDF
Download Now
Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theorists.

Quantum Information Computation and Communication

Author: Jonathan A. Jones
Publisher: Cambridge University Press
ISBN: 1139510622
Format: PDF
Download Now
Quantum physics allows entirely new forms of computation and cryptography, which could perform tasks currently impossible on classical devices, leading to an explosion of new algorithms, communications protocols and suggestions for physical implementations of all these ideas. As a result, quantum information has made the transition from an exotic research topic to part of mainstream undergraduate courses in physics. Based on years of teaching experience, this textbook builds from simple fundamental concepts to cover the essentials of the field. Aimed at physics undergraduate students with a basic background in quantum mechanics, it guides readers through theory and experiment, introducing all the central concepts without getting caught up in details. Worked examples and exercises make this useful as a self-study text for those who want a brief introduction before starting on more advanced books. Solutions are available online at www.cambridge.org/9781107014466.

Explorations in Quantum Computing

Author: Colin P. Williams
Publisher: Springer Science & Business Media
ISBN: 9781846288876
Format: PDF, Docs
Download Now
By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. "Quantum computing" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers – and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking supposedly "unbreakable" codes, generating true random numbers, and communicating with messages that betray the presence of eavesdropping. This widely anticipated second edition of Explorations in Quantum Computing explains these burgeoning developments in simple terms, and describes the key technological hurdles that must be overcome to make quantum computers a reality. This easy-to-read, time-tested, and comprehensive textbook provides a fresh perspective on the capabilities of quantum computers, and supplies readers with the tools necessary to make their own foray into this exciting field. Topics and features: concludes each chapter with exercises and a summary of the material covered; provides an introduction to the basic mathematical formalism of quantum computing, and the quantum effects that can be harnessed for non-classical computation; discusses the concepts of quantum gates, entangling power, quantum circuits, quantum Fourier, wavelet, and cosine transforms, and quantum universality, computability, and complexity; examines the potential applications of quantum computers in areas such as search, code-breaking, solving NP-Complete problems, quantum simulation, quantum chemistry, and mathematics; investigates the uses of quantum information, including quantum teleportation, superdense coding, quantum data compression, quantum cloning, quantum negation, and quantum cryptography; reviews the advancements made towards practical quantum computers, covering developments in quantum error correction and avoidance, and alternative models of quantum computation. This text/reference is ideal for anyone wishing to learn more about this incredible, perhaps "ultimate," computer revolution. Dr. Colin P. Williams is Program Manager for Advanced Computing Paradigms at the NASA Jet Propulsion Laboratory, California Institute of Technology, and CEO of Xtreme Energetics, Inc. an advanced solar energy company. Dr. Williams has taught quantum computing and quantum information theory as an acting Associate Professor of Computer Science at Stanford University. He has spent over a decade inspiring and leading high technology teams and building business relationships with and Silicon Valley companies. Today his interests include terrestrial and Space-based power generation, quantum computing, cognitive computing, computational material design, visualization, artificial intelligence, evolutionary computing, and remote olfaction. He was formerly a Research Scientist at Xerox PARC and a Research Assistant to Prof. Stephen W. Hawking, Cambridge University.