Quantum Mechanics for Electrical Engineers

Author: Dennis M. Sullivan
Publisher: John Wiley & Sons
ISBN: 0470874090
Format: PDF
Download Now
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at the heart of most electrical engineering theory. In this manner, the explanation of the quantum mechanics is rooted in the mathematics familiar to every electrical engineer. Secondly, beginning with the first chapter, simple computer programs in MATLAB are used to illustrate the principles. The programs can easily be copied and used by the reader to do the exercises at the end of the chapters or to just become more familiar with the material. Many of the figures in this book have a title across the top. This title is the name of the MATLAB program that was used to generate that figure. These programs are available to the reader. Appendix D lists all the programs, and they are also downloadable at http://booksupport.wiley.com

Quantum Mechanics for Electrical Engineers

Author: I. D. Mayergoyz
Publisher: World Scientific Publishing Company
ISBN: 9789813146907
Format: PDF, ePub, Docs
Download Now
The book is designed for a one-semester graduate course in quantum mechanics for electrical engineers. It can also be used for teaching quantum mechanics to graduate students in materials science and engineering departments as well as to applied physicists. The selection of topics in the book is based on their relevance to engineering applications. The book provides the theoretical foundation for graduate courses in quantum optics and lasers, semiconductor electronics, applied superconductivity and quantum computing. It covers (along with traditional subjects) the following topics: resonant and Josephson tunneling; Landau levels and their relation to the integer quantum Hall effect; effective mass Schrodinger equation and semi-classical transport; quantum transitions in two-level systems; Berry phase and Berry curvature; density matrix and optical Bloch equation for two-level systems; Wigner function and quantum transport; exchange interaction and spintronic.

Quantum Mechanics

Author: Isaak Mayergoyz
Publisher: World Scientific Publishing Company
ISBN: 9813146923
Format: PDF
Download Now
The book is designed for a one-semester graduate course in quantum mechanics for electrical engineers. It can also be used for teaching quantum mechanics to graduate students in materials science and engineering departments as well as to applied physicists. The selection of topics in the book is based on their relevance to engineering applications. The book provides the theoretical foundation for graduate courses in quantum optics and lasers, semiconductor electronics, applied superconductivity and quantum computing. It covers (along with traditional subjects) the following topics: resonant and Josephson tunneling; Landau levels and their relation to the integer quantum Hall effect; effective mass Schrodinger equation and semi-classical transport; quantum transitions in two-level systems; Berry phase and Berry curvature; density matrix and optical Bloch equation for two-level systems; Wigner function and quantum transport; exchange interaction and spintronic. Request Inspection Copy

Essential Quantum Mechanics for Electrical Engineers

Author: Peter Deák
Publisher: John Wiley & Sons
ISBN: 3527805834
Format: PDF, ePub, Mobi
Download Now
Quantum mechanics (QM) is latently present in the life of electrical engineers already, since the hardware of todays information technology - from electrical data processing, through interconversion of electronic and optical information, to data storage and visualization - works on QM principles. New developments in micro- and opto-electronics and the advent of quantum information processing will soon make the active understanding of QM unavoidable for engineers, too. Unfortunately, the principles of QM can only be formulated mathematically, so even introductory books on the subject are mostly rather abstract. This book, written mainly for BSc students, tries to help the reader by showing "QM in action", demonstrating its surprising effects directly in applications, like lighting technology, lasers, photo- and solar cells, flash memories and quantum bits. While the axioms and basic concepts of quantum mechanics are introduced without compromises, the math is kept at a level which is required from electrical engineers anyhow. Computational work is spared by the use of Applets which also visualize the results. Among the host of other didactic features are learning objectives, chapter summaries, self-testing questions, and problems with solutions, while two appendices summarize the knowledge in classical physics and mathematics which is needed for this book.

Quantum Mechanics

Author: David Ferry
Publisher: CRC Press
ISBN: 142003362X
Format: PDF, ePub, Docs
Download Now
This textbook provides a complete course in quantum mechanics for students of semiconductor device physics and electrical engineering. It provides the necessary background to quantum theory for those starting work on micro- and nanoelectronic structures and is particularly useful for those going on to work with semiconductors and lasers. This book was developed from a course the author has taught for many years with a style and order of presentation of material specifically designed for this audience. It introduces the main concepts of quantum mechanics which are important in everyday solid-state physics and electronics. Each topic includes examples which have been carefully chosen to draw upon relevant experimental research. It also includes problems with solutions to test understanding of theory. For the second edition significant new material has been added to each chapter, providing updated connections with relevant experiments and device concepts. New references and new problems are included.

Quantum Mechanics for Scientists and Engineers

Author: David A. B. Miller
Publisher: Cambridge University Press
ISBN: 1139471279
Format: PDF, ePub
Download Now
If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839.

Quantum Mechanics for Applied Physics and Engineering

Author: Albert T. Fromhold
Publisher: Courier Corporation
ISBN: 0486164691
Format: PDF, ePub, Docs
Download Now
For upper-level undergraduates and graduate students: an introduction to the fundamentals of quantum mechanics, emphasizing aspects essential to an understanding of solid-state theory. Numerous problems (and selected answers), projects, exercises.

Engineering Quantum Mechanics

Author: Doyeol Ahn
Publisher: John Wiley & Sons
ISBN: 1118017811
Format: PDF
Download Now
There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. Introducing senior and graduate students and research scientists to quantum mechanics concepts, which are becoming an essential tool in modern engineering, Engineering Quantum Mechanics develops a non-Markovian model for the optical gain of semiconductor, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. Example programs based on Fortran 77 are provided for band-structures of zinc-blende and wurtzite quantum wells.

Modern Physics for Engineers

Author: Jasprit Singh
Publisher: John Wiley & Sons
ISBN: 3527617698
Format: PDF, Mobi
Download Now
Linking physics fundamentals to modern technology-a highly applied primer for students and engineers Reminding us that modern inventions-new materials, information technologies, medical technological breakthroughs-are based on well-established fundamental principles of physics, Jasprit Singh integrates important topics from quantum mechanics, statistical thermodynamics, and materials science, as well as the special theory of relativity. He then goes a step farther and applies these fundamentals to the workings of electronic devices-an essential leap for anyone interested in developing new technologies. From semiconductors to nuclear magnetic resonance to superconducting materials to global positioning systems, Professor Singh draws on wide-ranging applications to demonstrate each concept under discussion. He downplays extended mathematical derivations in favor of results and their real-world design implication, supplementing the book with nearly 100 solved examples, 120 figures, and 200 end-of-chapter problems. Modern Physics for Engineers provides engineering and physics students with an accessible, unified introduction to the complex world underlying today's design-oriented curriculums. It is also an extremely useful resource for engineers and applied scientists wishing to take advantage of research opportunities in diverse fields.