Quantum Theory of Many Particle Systems

Author: Alexander L. Fetter
Publisher: Courier Corporation
ISBN: 048613475X
Format: PDF
Download Now
Self-contained treatment of nonrelativistic many-particle systems discusses both formalism and applications in terms of ground-state (zero-temperature) formalism, finite-temperature formalism, canonical transformations, and applications to physical systems. 1971 edition.

Quantum Theory of Many particle Systems

Author: Alexander L. Fetter
Publisher: Courier Corporation
ISBN: 9780486428277
Format: PDF, Mobi
Download Now
This self-contained treatment of nonrelativistic many-particle systems discusses both formalism and applications in terms of ground-state (zero-temperature) formalism, finite-temperature formalism, canonical transformations, and applications to physical systems. 149 figures. 8 tables. 1971 edition.

Quantum Many particle Systems

Author: John W. Negele
Publisher: CRC Press
ISBN: 0429966474
Format: PDF, ePub
Download Now
This book explains the fundamental concepts and theoretical techniques used to understand the properties of quantum systems having large numbers of degrees of freedom. A number of complimentary approaches are developed, including perturbation theory; nonperturbative approximations based on functional integrals; general arguments based on order parameters, symmetry, and Fermi liquid theory; and stochastic methods.

The Many body Problem in Quantum Mechanics

Author: Norman Henry March
Publisher: Courier Corporation
ISBN: 9780486687544
Format: PDF, ePub, Docs
Download Now
Single-volume account of methods used in dealing with the many-body problem and the resulting physics. Single-particle approximations, second quantization, many-body perturbation theory, Fermi fluids, superconductivity, many-boson systems, more. Each chapter contains well-chosen problems. Only prerequisite is basic understanding of elementary quantum mechanics. 1967 edition.

Many Particle Physics

Author: Gerald D. Mahan
Publisher: Springer Science & Business Media
ISBN: 147575714X
Format: PDF
Download Now
The first, second, and third editions of this book seem to occur at ten year intervals. The intent is to keep the book up-to-date. Many-body theory is a field which continually evolves in time. Journals only publish new results, conferences only invite speakers to report new phenomena, and agencies only fund scientists to do new physics. Today's physics is old hat by tomorrow. Students want to learn new material, and textbooks must be modified to keep up with the times. The early chapters in this book teach the techniques of many-body theory. They are largely unchanged in format. The later chapters apply the techniques to specific problems. The third edition increases the number of applications. New sections have been added, while old sections have been modified to include recent applications. The previous editions were set in type using pre-computer technology. No computer file existed of the prior editions. The publisher scanned the second edition and gave me a disk with the contents. This scan recorded the words accurately and scrambled the equations into unintelligible form. So I retyped the equations using LaTeX. Although tedious, it allowed me to correct the infinite numbers of typographical errors in the previous edition. The earlier typesetting methods did not permit such corrections. The entire book was edited sentence-by sentence. Most old sections of the book were shortened by editing sentences and paragraphs.

Theoretical Mechanics of Particles and Continua

Author: Alexander L. Fetter
Publisher: Courier Corporation
ISBN: 0486432610
Format: PDF, Mobi
Download Now
This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics — which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics. The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including a brief discussion of the transition to quantum mechanics. This part of the book also considers examples of the limiting behavior of many particles, facilitating the eventual transition to a continuous medium. The second part deals with classical continua, including chapters on string membranes, sound waves, surface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic media. Each of these self-contained chapters provides the relevant physical background and develops the appropriate mathematical techniques, and problems of varying difficulty appear throughout the text.

Scattering Theory

Author: John R. Taylor
Publisher: Courier Corporation
ISBN: 0486142078
Format: PDF, ePub, Mobi
Download Now
This graduate-level text, intended for any student of physics who requires a thorough grounding in the quantum theory of nonrelativistic scattering, emphasizes the time-dependent approach. 1983 edition.

Many body Theory Exposed

Author: Willem Hendrik Dickhoff
Publisher: World Scientific
ISBN: 9812813799
Format: PDF, ePub, Docs
Download Now
This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.

A Guide to Feynman Diagrams in the Many Body Problem

Author: Richard D. Mattuck
Publisher: Courier Corporation
ISBN: 0486131645
Format: PDF, Mobi
Download Now
Superb introduction for nonspecialists covers Feynman diagrams, quasi particles, Fermi systems at finite temperature, superconductivity, vacuum amplitude, Dyson's equation, ladder approximation, and more. "A great delight." — Physics Today. 1974 edition.