R for Marketing Research and Analytics

Author: Chris Chapman
Publisher: Springer
ISBN: 3319144367
Format: PDF, Docs
Download Now
This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.

R for Marketing Research and Analytics

Author: Christopher N. Chapman
Publisher: Springer
ISBN: 9783319144351
Format: PDF, Docs
Download Now
This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.

Quantitative Models in Marketing Research

Author: Philip Hans Franses
Publisher: Cambridge University Press
ISBN: 9781139428842
Format: PDF, Kindle
Download Now
Advances in data collection and data storage techniques have enabled marketing researchers to study the individual characteristics of a large range of transactions and purchases, in particular the effects of household-specific characteristics. This 2001 book presents important and practically relevant quantitative models for marketing research. Each model is presented in detail with a self-contained discussion, which includes: a demonstration of the mechanics of the model, empirical analysis, real world examples, and interpretation of results and findings. The reader of the book will learn how to apply the techniques, as well as understand the methodological developments in the academic literature. Pathways are offered in the book for students and practitioners with differing numerical skill levels; a basic knowledge of elementary numerical techniques is assumed.

Statistics for Marketing and Consumer Research

Author: Mario Mazzocchi
Publisher: SAGE
ISBN: 1446204014
Format: PDF, Mobi
Download Now
Balancing simplicity with technical rigour, this practical guide to the statistical techniques essential to research in marketing and related fields, describes each method as well as showing how they are applied. The book is accompanied by two real data sets to replicate examples and with exercises to solve, as well as detailed guidance on the use of appropriate software including: - 750 powerpoint slides with lecture notes and step-by-step guides to run analyses in SPSS (also includes screenshots) - 136 multiple choice questions for tests This is augmented by in-depth discussion of topics including: - Sampling - Data management and statistical packages - Hypothesis testing - Cluster analysis - Structural equation modelling

Marketing Data Science

Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887340
Format: PDF
Download Now
Now , a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

Business Analytics Using R A Practical Approach

Author: Umesh R Hodeghatta
Publisher: Apress
ISBN: 1484225147
Format: PDF, ePub, Docs
Download Now
Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.

Customer and Business Analytics

Author: Daniel S. Putler
Publisher: CRC Press
ISBN: 149875970X
Format: PDF, Mobi
Download Now
Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the text is ideal for students in customer and business analytics or applied data mining as well as professionals in small- to medium-sized organizations. The book offers an intuitive understanding of how different analytics algorithms work. Where necessary, the authors explain the underlying mathematics in an accessible manner. Each technique presented includes a detailed tutorial that enables hands-on experience with real data. The authors also discuss issues often encountered in applied data mining projects and present the CRISP-DM process model as a practical framework for organizing these projects. Showing how data mining can improve the performance of organizations, this book and its R-based software provide the skills and tools needed to successfully develop advanced analytics capabilities.

Applied Conjoint Analysis

Author: Vithala R. Rao
Publisher: Springer Science & Business Media
ISBN: 3540877533
Format: PDF, ePub, Mobi
Download Now
Conjoint analysis is probably the most significant development in marketing research in the past few decades. It can be described as a set of techniques ideally suited to studying customers’ decision-making processes and determining tradeoffs. Though this book is oriented towards methods and applications of conjoint analysis in marketing, conjoint methods are also applicable for other business and social sciences. After an introduction to the basic ideas of conjoint analysis the book describes the steps involved in designing a ratings-based conjoint study, it covers various methods for estimating partworth functions from preference ratings data, and dedicates a chapter on methods of design and analysis of conjoint-based choice experiments, where choice is measured directly. Chapter 5 describes several methods for handling a large number of attributes. Chapters 6 through 8 discuss the use of conjoint analysis for specific applications like product and service design or product line decisions, product positioning and market segmentation decisions, and pricing decisions. Chapter 9 collates miscellaneous applications of marketing mix including marketing resource allocation or store location decisions. Finally, Chapter 10 reviews more recent developments in experimental design and data analysis and presents an assessment of future developments.

Handbook of Marketing Analytics

Author: Natalie Mizik
Publisher: Edward Elgar Publishing
ISBN: 1784716758
Format: PDF, ePub
Download Now
Marketing Science contributes significantly to the development and validation of analytical tools with a wide range of applications in business, public policy and litigation support. The Handbook of Marketing Analytics showcases the analytical methods used in marketing and their high-impact real-life applications. Fourteen chapters provide an overview of specific marketing analytic methods in some technical detail and 22 case studies present thorough examples of the use of each method in marketing management, public policy, and litigation support. All contributing authors are recognized authorities in their area of specialty.

R for Business Analytics

Author: A Ohri
Publisher: Springer Science & Business Media
ISBN: 1461443423
Format: PDF, ePub, Docs
Download Now
R for Business Analytics looks at some of the most common tasks performed by business analysts and helps the user navigate the wealth of information in R and its 4000 packages. With this information the reader can select the packages that can help process the analytical tasks with minimum effort and maximum usefulness. The use of Graphical User Interfaces (GUI) is emphasized in this book to further cut down and bend the famous learning curve in learning R. This book is aimed to help you kick-start with analytics including chapters on data visualization, code examples on web analytics and social media analytics, clustering, regression models, text mining, data mining models and forecasting. The book tries to expose the reader to a breadth of business analytics topics without burying the user in needless depth. The included references and links allow the reader to pursue business analytics topics. This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field of exploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategize and DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy. The book utilizes Albert Einstein’s famous remarks on making things as simple as possible, but no simpler. This book will blow the last remaining doubts in your mind about using R in your business environment. Even non-technical users will enjoy the easy-to-use examples. The interviews with creators and corporate users of R make the book very readable. The author firmly believes Isaac Asimov was a better writer in spreading science than any textbook or journal author.