Ramanujan s Lost Notebook

Author: George E. Andrews
Publisher: Springer Science & Business Media
ISBN: 1461440815
Format: PDF, Kindle
Download Now
​​​​In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This volume is the fourth of five volumes that the authors plan to write on Ramanujan’s lost notebook.​ In contrast to the first three books on Ramanujan's Lost Notebook, the fourth book does not focus on q-series. Most of the entries examined in this volume fall under the purviews of number theory and classical analysis. Several incomplete manuscripts of Ramanujan published by Narosa with the lost notebook are discussed. Three of the partial manuscripts are on diophantine approximation, and others are in classical Fourier analysis and prime number theory. Most of the entries in number theory fall under the umbrella of classical analytic number theory. Perhaps the most intriguing entries are connected with the classical, unsolved circle and divisor problems. Review from the second volume: "Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited." - MathSciNet Review from the first volume: "Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete." - Gazette of the Australian Mathematical Society​

Ramanujan s Notebooks

Author: Bruce C. Berndt
Publisher: Springer Science & Business Media
ISBN: 9780387967943
Format: PDF, Mobi
Download Now
During the years 1903-1914, Ramanujan recorded many of his mathematical discoveries in notebooks without providing proofs. Although many of his results were already in the literature, more were not. Almost a decade after Ramanujan's death in 1920, G.N. Watson and B.M. Wilson began to edit his notebooks but never completed the task. A photostat edition, with no editing, was published by the Tata Institute of Fundamental Research in Bombay in 1957. This book is the second of four volumes devoted to the editing of Ramanujan's Notebooks. Part I, published in 1985, contains an account of Chapters 1-9 in the second notebook as well as a description of Ramanujan's quarterly reports. In this volume, we examine Chapters 10-15 in Ramanujan's second notebook. If a result is known, we provide references in the literature where proofs may be found; if a result is not known, we attempt to prove it. Not only are the results fascinating, but, for the most part, Ramanujan's methods remain a mystery. Much work still needs to be done. We hope readers will strive to discover Ramanujan's thoughts and further develop his beautiful ideas.

The Lost Notebook and Other Unpublished Papers

Author: Srinivasa Ramanujan Aiyangar
Publisher: Springer
ISBN: 9780387187266
Format: PDF, ePub, Docs
Download Now
The so-called Lost Notebook of S.R. Ramanujan was brought to light in 1976 as part of the Watson bequest, by G.E. Andrews with whose introduction this collection of unpublished manuscripts opens. A major portion of the Lost Notebook - really just 90 unpaginated sheets of work on q-series and other topics - is reproduced here in facsimile. Letters from Ramanujan to Hardy as well as various other sheets of seemingly related notes are then included, on topics including coefficients in the 1/q3 and 1/q2 problems and the mock theta functions. The next 180 pages consist of unpublished manuscripts of Ramanujan, including 28 pages from the 'Loose Papers` held in the Trinity College Library. Finally a number of interesting letters that were exchanged between Ramanujan, Littlewood, Hardy and Watson, with a bearing on Ramanujan's work are collected together here with other extracts and fragments.

Number Theory in the Spirit of Ramanujan

Author: Bruce C. Berndt
Publisher: American Mathematical Soc.
ISBN: 0821841785
Format: PDF, Mobi
Download Now
Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of $q$-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics.The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.

Collected Papers of Srinivasa Ramanujan

Author: Srinivasa Ramanujan Aiyangar
Publisher: American Mathematical Soc.
ISBN: 0821820761
Format: PDF, Docs
Download Now
The influence of Ramanujan on number theory is without parallel in mathematics. His papers, problems, and letters have spawned a remarkable number of later results by many different mathematicians. Here, his 37 published papers, most of his first two and last letters to Hardy, the famous 58 problems submitted to the Journal of the Indian Mathematical Society, and the commentary of the original editors (Hardy, Seshu Aiyar and Wilson) are reprinted again, after having been unavailable for some time. In this printing of Ramanujan's collected papers, Bruce Berndt provides an annotated guide to Ramanujan's work and to the mathematics it inspired over the last three-quarters of a century. The historical development of ideas is traced in the commentary and by citations to the copious references. The editor has done the mathematical world a tremendous service that few others would be qualified to do.

Number Theory and Discrete Mathematics

Author: A.K. Agarwal
Publisher: Birkhäuser
ISBN: 3034882238
Format: PDF, ePub
Download Now
To mark the World Mathematical Year 2000 an International Conference on Number Theory and Discrete Mathematics in honour of the legendary Indian Mathematician Srinivasa Ramanuj~ was held at the centre for Advanced study in Mathematics, Panjab University, Chandigarh, India during October 2-6, 2000. This volume contains the proceedings of that conference. In all there were 82 participants including 14 overseas participants from Austria, France, Hungary, Italy, Japan, Korea, Singapore and the USA. The conference was inaugurated by Prof. K. N. Pathak, Hon. Vice-Chancellor, Panjab University, Chandigarh on October 2, 2000. Prof. Bruce C. Berndt of the University of Illinois, Urbana Chaimpaign, USA delivered the key note address entitled "The Life, Notebooks and Mathematical Contributions of Srinivasa Ramanujan". He described Ramanujan--as one of this century's most influential Mathematicians. Quoting Mark K. ac, Prof. George E. Andrews of the Pennsylvania State University, USA, in his message for the conference, described Ramanujan as a "magical genius". During the 5-day deliberations invited speakers gave talks on various topics in number theory and discrete mathematics. We mention here a few of them just as a sampling: • M. Waldschmidt, in his article, provides a very nice introduction to the topic of multiple poly logarithms and their special values. • C.

Ramanujan

Author: Bruce C. Berndt
Publisher: American Mathematical Soc.
ISBN: 9780821826249
Format: PDF, ePub, Mobi
Download Now
This book contains essays on Ramanujan and his work that were written especially for this volume. It also includes important survey articles in areas influenced by Ramanujan's mathematics. Most of the articles in the book are nontechnical, but even those that are more technical contain substantial sections that will engage the general reader. The book opens with the only four existing photographs of Ramanujan, presenting historical accounts of them and information about other people in the photos. This section includes an account of a cryptic family history written by his younger brother, S. Lakshmi Narasimhan. Following are articles on Ramanujan's illness by R. A. Rankin, the British physician D. A. B. Young, and Nobel laureate S. Chandrasekhar. They present a study of his symptoms, a convincing diagnosis of the cause of his death, and a thorough exposition of Ramanujan's life as a patient in English sanitariums and nursing homes. Following this are biographies of S. Janaki (Mrs. Ramanujan) and S. Narayana Iyer, Chief Accountant of the Madras Port Trust Office, who first communicated Ramanujan's work to the Journal of the Indian Mathematical Society. The last half of the book begins with a section on ``Ramanujan's Manuscripts and Notebooks''. Included is an important article by G. E. Andrews on Ramanujan's lost notebook. The final two sections feature both nontechnical articles, such as Jonathan and Peter Borwein's ``Ramanujan and pi'', and more technical articles by Freeman Dyson, Atle Selberg, Richard Askey, and G. N. Watson. This volume complements the book Ramanujan: Letters and Commentary, Volume 9, in the AMS series, History of Mathematics. For more on Ramanujan, see these AMS publications, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, Volume 136.H, and Collected Papers of Srinivasa Ramanujan, Volume 159.H, in the AMS Chelsea Publishing series.

Number Theory

Author: George E. Andrews
Publisher: Courier Corporation
ISBN: 0486135101
Format: PDF, Kindle
Download Now
Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more

The Mathematical Legacy of Srinivasa Ramanujan

Author: M. Ram Murty
Publisher: Springer Science & Business Media
ISBN: 8132207696
Format: PDF
Download Now
Srinivasa Ramanujan was a mathematician brilliant beyond comparison who inspired many great mathematicians. There is extensive literature available on the work of Ramanujan. But what is missing in the literature is an analysis that would place his mathematics in context and interpret it in terms of modern developments. The 12 lectures by Hardy, delivered in 1936, served this purpose at the time they were given. This book presents Ramanujan’s essential mathematical contributions and gives an informal account of some of the major developments that emanated from his work in the 20th and 21st centuries. It contends that his work still has an impact on many different fields of mathematical research. This book examines some of these themes in the landscape of 21st-century mathematics. These essays, based on the lectures given by the authors focus on a subset of Ramanujan’s significant papers and show how these papers shaped the course of modern mathematics.

Summability Calculus

Author: Ibrahim M. Alabdulmohsin
Publisher: Springer
ISBN: 3319746480
Format: PDF, Docs
Download Now
This book develops the foundations of "summability calculus", which is a comprehensive theory of fractional finite sums. It fills an important gap in the literature by unifying and extending disparate historical results. It also presents new material that has not been published before. Importantly, it shows how the study of fractional finite sums benefits from and contributes to many areas of mathematics, such as divergent series, numerical integration, approximation theory, asymptotic methods, special functions, series acceleration, Fourier analysis, the calculus of finite differences, and information theory. As such, it appeals to a wide audience of mathematicians whose interests include the study of special functions, summability theory, analytic number theory, series and sequences, approximation theory, asymptotic expansions, or numerical methods. Richly illustrated, it features chapter summaries, and includes numerous examples and exercises. The content is mostly developed from scratch using only undergraduate mathematics, such as calculus and linear algebra.