Real Analysis

Author: Saul Stahl
Publisher: John Wiley & Sons
ISBN: 1118096851
Format: PDF, ePub
Download Now
A provocative look at the tools and history of realanalysis This new edition of Real Analysis: A Historical Approachcontinues to serve as an interesting read for students of analysis.Combining historical coverage with a superb introductory treatment,this book helps readers easily make the transition from concrete toabstract ideas. The book begins with an exciting sampling of classic and famousproblems first posed by some of the greatest mathematicians of alltime. Archimedes, Fermat, Newton, and Euler are each summoned inturn, illuminating the utility of infinite, power, andtrigonometric series in both pure and applied mathematics. Next,Dr. Stahl develops the basic tools of advanced calculus, whichintroduce the various aspects of the completeness of the realnumber system as well as sequential continuity anddifferentiability and lead to the Intermediate and Mean ValueTheorems. The Second Edition features: A chapter on the Riemann integral, including the subject ofuniform continuity Explicit coverage of the epsilon-delta convergence A discussion of the modern preference for the viewpoint ofsequences over that of series Throughout the book, numerous applications and examplesreinforce concepts and demonstrate the validity of historicalmethods and results, while appended excerpts from originalhistorical works shed light on the concerns of influentialmathematicians in addition to the difficulties encountered in theirwork. Each chapter concludes with exercises ranging in level ofcomplexity, and partial solutions are provided at the end of thebook. Real Analysis: A Historical Approach, Second Edition isan ideal book for courses on real analysis and mathematicalanalysis at the undergraduate level. The book is also a valuableresource for secondary mathematics teachers and mathematicians.

Functional Differential Equations

Author: Constantin Corduneanu
Publisher: John Wiley & Sons
ISBN: 1119189489
Format: PDF, ePub, Mobi
Download Now
Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Real Analysis

Author: Mark Bridger
Publisher: John Wiley & Sons
ISBN: 1118367715
Format: PDF, ePub, Mobi
Download Now
A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense—not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem Sequences, limits and series, and the careful derivation of formulas and estimates for important functions Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals Differentiation, emphasizing the derivative as a function rather than a pointwise limit Properties of sequences and series of continuous and differentiable functions Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging. This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.

Solutions Manual to Accompany Beginning Partial Differential Equations

Author: Peter V. O'Neil
Publisher: John Wiley & Sons
ISBN: 1118630092
Format: PDF, ePub
Download Now
Solutions Manual to Accompany Beginning Partial Differential Equations, 3rd Edition Featuring a challenging, yet accessible, introduction to partial differential equations, Beginning Partial Differential Equations provides a solid introduction to partial differential equations, particularly methods of solution based on characteristics, separation of variables, as well as Fourier series, integrals, and transforms. Thoroughly updated with novel applications, such as Poe's pendulum and Kepler's problem in astronomy, this third edition is updated to include the latest version of Maples, which is integrated throughout the text. New topical coverage includes novel applications, such as Poe's pendulum and Kepler's problem in astronomy.

Numerical Analysis of Partial Differential Equations

Author: S. H, Lui
Publisher: John Wiley & Sons
ISBN: 1118111117
Format: PDF, ePub
Download Now
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Format: PDF, Mobi
Download Now
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

An introduction to nonlinear partial differential equations

Author: John David Logan
Publisher: LibreDigital
ISBN: 9780470225950
Format: PDF, ePub, Docs
Download Now
An Introduction to Nonlinear Partial Differential Equations is a textbook on nonlinear partial differential equations. It is technique oriented with an emphasis on applications and is designed to build a foundation for studying advanced treatises in the field. The Second Edition features an updated bibliography as well as an increase in the number of exercises. All software references have been updated with the latest version of [email protected], the corresponding graphics have also been updated using [email protected] An increased focus on hydrogeology....

A first course in functional analysis

Author: S. David Promislow
Publisher:
ISBN: 9780470146194
Format: PDF
Download Now
A concise introduction to the major concepts of functional analysis Requiring only a preliminary knowledge of elementary linear algebra and real analysis, A First Course in Functional Analysis provides an introduction to the basic principles and practical applications of functional analysis. Key concepts are illustrated in a straightforward manner, which facilitates a complete and fundamental understanding of the topic. This book is based on the author's own class-tested material and uses clear language to explain the major concepts of functional analysis, including Banach spaces, Hilbert spaces, topological vector spaces, as well as bounded linear functionals and operators. As opposed to simply presenting the proofs, the author outlines the logic behind the steps, demonstrates the development of arguments, and discusses how the concepts are connected to one another. Each chapter concludes with exercises ranging in difficulty, giving readers the opportunity to reinforce their comprehension of the discussed methods. An appendix provides a thorough introduction to measure and integration theory, and additional appendices address the background material on topics such as Zorn's lemma, the Stone-Weierstrass theorem, Tychonoff's theorem on product spaces, and the upper and lower limit points of sequences. References to various applications of functional analysis are also included throughout the book. A First Course in Functional Analysis is an ideal text for upper-undergraduate and graduate-level courses in pure and applied mathematics, statistics, and engineering. It also serves as a valuable reference for practitioners across various disciplines, including the physical sciences, economics, and finance, who would like to expand their knowledge of functional analysis.

Topology

Author: Paul Louis Shick
Publisher: Wiley-Blackwell
ISBN: 9780470096055
Format: PDF, Docs
Download Now
The essentials of point-set topology, complete with motivation and numerous examples Topology: Point-Set and Geometric presents an introduction to topology that begins with the axiomatic definition of a topology on a set, rather than starting with metric spaces or the topology of subsets of Rn. This approach includes many more examples, allowing students to develop more sophisticated intuition and enabling them to learn how to write precise proofs in a brand-new context, which is an invaluable experience for math majors. Along with the standard point-set topology topics-connected and path-connected spaces, compact spaces, separation axioms, and metric spaces-Topology covers the construction of spaces from other spaces, including products and quotient spaces. This innovative text culminates with topics from geometric and algebraic topology (the Classification Theorem for Surfaces and the fundamental group), which provide instructors with the opportunity to choose which "capstone" best suits his or her students. Topology: Point-Set and Geometric features: A short introduction in each chapter designed to motivate the ideas and place them into an appropriate context Sections with exercise sets ranging in difficulty from easy to fairly challenging Exercises that are very creative in their approaches and work well in a classroom setting A supplemental Web site that contains complete and colorful illustrations of certain objects, several learning modules illustrating complicated topics, and animations of particularly complex proofs