Real Analysis

Author: Miklós Laczkovich
Publisher: Springer
ISBN: 1493927663
Format: PDF, Docs
Download Now
Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.

Real Analysis

Author: Miklós Laczkovich
Publisher: Springer
ISBN: 149397369X
Format: PDF, Mobi
Download Now
This book develops the theory of multivariable analysis, building on the single variable foundations established in the companion volume, Real Analysis: Foundations and Functions of One Variable. Together, these volumes form the first English edition of the popular Hungarian original, Valós Analízis I & II, based on courses taught by the authors at Eötvös Loránd University, Hungary, for more than 30 years. Numerous exercises are included throughout, offering ample opportunities to master topics by progressing from routine to difficult problems. Hints or solutions to many of the more challenging exercises make this book ideal for independent study, or further reading. Intended as a sequel to a course in single variable analysis, this book builds upon and expands these ideas into higher dimensions. The modular organization makes this text adaptable for either a semester or year-long introductory course. Topics include: differentiation and integration of functions of several variables; infinite numerical series; sequences and series of functions; and applications to other areas of mathematics. Many historical notes are given and there is an emphasis on conceptual understanding and context, be it within mathematics itself or more broadly in applications, such as physics. By developing the student’s intuition throughout, many definitions and results become motivated by insights from their context.

Elementary Analysis

Author: Kenneth A. Ross
Publisher: Springer Science & Business Media
ISBN: 9780387904597
Format: PDF, Kindle
Download Now
Designed for students having no previous experience with rigorous proofs, this text on analysis is intended to follow a standard calculus course. It will be useful for students planning to continue in mathematics (with, for example, complex variables, differential equations, numerical analysis, multivariable calculus, or statistics), as well as for future secondary school teachers.

Mathematical Analysis

Author: Andrew Browder
Publisher: Springer Science & Business Media
ISBN: 1461207150
Format: PDF, Docs
Download Now
Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Foundations of Mathematical Analysis

Author: Richard Johnsonbaugh
Publisher: Courier Corporation
ISBN: 0486134776
Format: PDF, Docs
Download Now
Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.

Real Analysis

Author: Fon-Che Liu
Publisher: Oxford University Press
ISBN: 0198790422
Format: PDF, ePub, Docs
Download Now
Real Analysis is indispensable for in-depth understanding and effective application of methods of modern analysis. This concise and friendly book is written for early graduate students of mathematics or of related disciplines hoping to learn the basics of Real Analysis with reasonable ease. The essential role of Real Analysis in the construction of basic function spaces necessary for the application of Functional Analysis in many fields of scientific disciplines is demonstrated with due explanations and illuminating examples. After the introductory chapter, a compact but precise treatment of general measure and integration is taken up so that readers have an overall view of the simple structure of the general theory before delving into special measures. The universality of the method of outer measure in the construction of measures is emphasized because it provides a unified way of looking for useful regularity properties of measures. The chapter on functions of real variables sits at the core of the book; it treats in detail properties of functions that are not only basic for understanding the general feature of functions but also relevant for the study of those function spaces which are important when application of functional analytical methods is in question. This is then followed naturally by an introductory chapter on basic principles of Functional Analysis which reveals, together with the last two chapters on the space of p-integrable functions and Fourier integral, the intimate interplay between Functional Analysis and Real Analysis. Applications of many of the topics discussed are included to motivate the readers for further related studies; these contain explorations towards probability theory and partial differential equations.

The Foundations of Real Analysis

Author: Richard Mikula
Publisher: Universal-Publishers
ISBN: 1627345655
Format: PDF, Docs
Download Now
This textbook covers the subject of real analysis from the fundamentals up through beginning graduate level. It is appropriate as an introductory course text or a review text for graduate qualifying examinations. Some special features of the text include a thorough discussion of transcendental functions such as trigonometric, logarithmic, and exponential from power series expansions, deducing all important functional properties from the series definitions. The text is written in a user-friendly manner, and includes full solutions to all assigned exercises throughout the text.

Foundations of Analysis

Author: Joseph L. Taylor
Publisher: American Mathematical Soc.
ISBN: 0821889842
Format: PDF, Docs
Download Now
Foundations of Analysis is an excellent new text for undergraduate students in real analysis. More than other texts in the subject, it is clear, concise and to the point, without extra bells and whistles. It also has many good exercises that help illustrate the material. My students were very satisfied with it. --Nat Smale, University of Utah I have taught our Foundations of Analysis course (based on Joe Taylor.s book) several times recently, and have enjoyed doing so. The book is well-written, clear, and concise, and supplies the students with very good introductory discussions of the various topics, correct and well-thought-out proofs, and appropriate, helpful examples. The end-of-chapter problems supplement the body of the text very well (and range nicely from simple exercises to really challenging problems). --Robert Brooks, University of Utah An excellent text for students whose future will include contact with mathematical analysis, whatever their discipline might be. It is content-comprehensive and pedagogically sound. There are exercises adequate to guarantee thorough grounding in the basic facts, and problems to initiate thought and gain experience in proofs and counterexamples. Moreover, the text takes the reader near enough to the frontier of analysis at the calculus level that the teacher can challenge the students with questions that are at the ragged edge of research for undergraduate students. I like it a lot. --Don Tucker, University of Utah My students appreciate the concise style of the book and the many helpful examples. --W.M. McGovern, University of Washington Analysis plays a crucial role in the undergraduate curriculum. Building upon the familiar notions of calculus, analysis introduces the depth and rigor characteristic of higher mathematics courses. Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. The list of topics covered is rather standard, although the treatment of some of them is not. The several variable material makes full use of the power of linear algebra, particularly in the treatment of the differential of a function as the best affine approximation to the function at a given point. The text includes a review of several linear algebra topics in preparation for this material. In the final chapter, vector calculus is presented from a modern point of view, using differential forms to give a unified treatment of the major theorems relating derivatives and integrals: Green's, Gauss's, and Stokes's Theorems. At appropriate points, abstract metric spaces, topological spaces, inner product spaces, and normed linear spaces are introduced, but only as asides. That is, the course is grounded in the concrete world of Euclidean space, but the students are made aware that there are more exotic worlds in which the concepts they are learning may be studied.

Mathematical Analysis

Author: Mariano Giaquinta
Publisher: Springer Science & Business Media
ISBN: 1461200075
Format: PDF, Docs
Download Now
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941.

Theory of Functions of a Real Variable

Author: I.P. Natanson
Publisher: Courier Dover Publications
ISBN: 048680643X
Format: PDF, ePub, Docs
Download Now
Long out-of-print volume by a prominent Soviet mathematician presents a thorough examination of the theory of functions of a real variable. Intended for advanced undergraduates and graduate students of mathematics. 1955 and 1960 editions.