Real Analysis

Author: J Yeh
Publisher: World Scientific Publishing Company
ISBN: 9814578568
Format: PDF, ePub
Download Now
This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped. The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians. The book is also very helpful to graduate students in statistics and electrical engineering, two disciplines that apply measure theory.

Problems and Proofs in Real Analysis

Author: J Yeh
Publisher: World Scientific Publishing Company
ISBN: 9814578525
Format: PDF, ePub
Download Now
This volume consists of the proofs of 391 problems in Real Analysis: Theory of Measure and Integration (3rd Edition). Most of the problems in Real Analysis are not mere applications of theorems proved in the book but rather extensions of the proven theorems or related theorems. Proving these problems tests the depth of understanding of the theorems in the main text. This volume will be especially helpful to those who read Real Analysis in self-study and have no easy access to an instructor or an advisor.

Measure and Integration

Author: Leonard F. Richardson
Publisher: John Wiley & Sons
ISBN: 9780470501146
Format: PDF, ePub, Docs
Download Now
A uniquely accessible book for general measure and integration, emphasizing the real line, Euclidean space, and the underlying role of translation in real analysis Measure and Integration: A Concise Introduction to Real Analysis presents the basic concepts and methods that are important for successfully reading and understanding proofs. Blending coverage of both fundamental and specialized topics, this book serves as a practical and thorough introduction to measure and integration, while also facilitating a basic understanding of real analysis. The author develops the theory of measure and integration on abstract measure spaces with an emphasis of the real line and Euclidean space. Additional topical coverage includes: Measure spaces, outer measures, and extension theorems Lebesgue measure on the line and in Euclidean space Measurable functions, Egoroff's theorem, and Lusin's theorem Convergence theorems for integrals Product measures and Fubini's theorem Differentiation theorems for functions of real variables Decomposition theorems for signed measures Absolute continuity and the Radon-Nikodym theorem Lp spaces, continuous-function spaces, and duality theorems Translation-invariant subspaces of L2 and applications The book's presentation lays the foundation for further study of functional analysis, harmonic analysis, and probability, and its treatment of real analysis highlights the fundamental role of translations. Each theorem is accompanied by opportunities to employ the concept, as numerous exercises explore applications including convolutions, Fourier transforms, and differentiation across the integral sign. Providing an efficient and readable treatment of this classical subject, Measure and Integration: A Concise Introduction to Real Analysis is a useful book for courses in real analysis at the graduate level. It is also a valuable reference for practitioners in the mathematical sciences.

Real Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400835569
Format: PDF
Download Now
Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After setting forth the basic facts of measure theory, Lebesgue integration, and differentiation on Euclidian spaces, the authors move to the elements of Hilbert space, via the L2 theory. They next present basic illustrations of these concepts from Fourier analysis, partial differential equations, and complex analysis. The final part of the book introduces the reader to the fascinating subject of fractional-dimensional sets, including Hausdorff measure, self-replicating sets, space-filling curves, and Besicovitch sets. Each chapter has a series of exercises, from the relatively easy to the more complex, that are tied directly to the text. A substantial number of hints encourage the reader to take on even the more challenging exercises. As with the other volumes in the series, Real Analysis is accessible to students interested in such diverse disciplines as mathematics, physics, engineering, and finance, at both the undergraduate and graduate levels. Also available, the first two volumes in the Princeton Lectures in Analysis:

An Introduction to Measure Theory

Author: Terence Tao
Publisher: American Mathematical Soc.
ISBN: 0821869191
Format: PDF, Docs
Download Now
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Measure and Integral

Author: Richard L. Wheeden
Publisher: CRC Press
ISBN: 1498702902
Format: PDF, Mobi
Download Now
Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content. Published nearly forty years after the first edition, this long-awaited Second Edition also: Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hölder continuous functions and the space of functions of bounded mean oscillation Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincaré–Sobolev inequalities, including endpoint cases Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables Includes many new exercises not present in the first edition This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.

Lectures on Real Analysis

Author: J. Yeh
Publisher: World Scientific
ISBN: 9789810239367
Format: PDF, ePub, Mobi
Download Now
The theory of the Lebesgue integral is a main pillar in the foundation of modern analysis and its applications, including probability theory. This volume shows how and why the Lebesgue integral is such a universal and powerful concept. The lines of development of the theory are made clear by the order in which the main theorems are presented. Frequent references to earlier theorems made in the proofs emphasize the interdependence of the theorems and help to show how the various definitions and theorems fit together. Counter-examples are included to show why a hypothesis in a theorem cannot be dropped. The book is based upon a course on real analysis which the author has taught. It is particularly suitable for a one-year course at the graduate level. Precise statements and complete proofs are given for every theorem, with no obscurity left. For this reason the book is also suitable for self-study.

Real Analysis

Author: Jewgeni H. Dshalalow
Publisher: CRC Press
ISBN: 1420036890
Format: PDF, Mobi
Download Now
Designed for use in a two-semester course on abstract analysis, REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration illuminates the principle topics that constitute real analysis. Self-contained, with coverage of topology, measure theory, and integration, it offers a thorough elaboration of major theorems, notions, and constructions needed not only by mathematics students but also by students of statistics and probability, operations research, physics, and engineering. Structured logically and flexibly through the author's many years of teaching experience, the material is presented in three main sections: Part 1, chapters 1through 3, covers the preliminaries of set theory and the fundamentals of metric spaces and topology. This section can also serves as a text for first courses in topology. Part II, chapter 4 through 7, details the basics of measure and integration and stands independently for use in a separate measure theory course. Part III addresses more advanced topics, including elaborated and abstract versions of measure and integration along with their applications to functional analysis, probability theory, and conventional analysis on the real line. Analysis lies at the core of all mathematical disciplines, and as such, students need and deserve a careful, rigorous presentation of the material. REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration offers the perfect vehicle for building the foundation students need for more advanced studies.

Measure Theory and Integration

Author: Michael Eugene Taylor
Publisher: American Mathematical Soc.
ISBN: 0821841807
Format: PDF, ePub, Mobi
Download Now
This self-contained treatment of measure and integration begins with a brief review of the Riemann integral and proceeds to a construction of Lebesgue measure on the real line. From there the reader is led to the general notion of measure, to the construction of the Lebesgue integral on a measure space, and to the major limit theorems, such as the Monotone and Dominated Convergence Theorems. The treatment proceeds to $L^p$ spaces, normed linear spaces that are shown to be complete (i.e., Banach spaces) due to the limit theorems. Particular attention is paid to $L^2$ spaces as Hilbert spaces, with a useful geometrical structure. Having gotten quickly to the heart of the matter, the text proceeds to broaden its scope. There are further constructions of measures, including Lebesgue measure on $n$-dimensional Euclidean space. There are also discussions of surface measure, and more generally of Riemannian manifolds and the measures they inherit, and an appendix on the integration of differential forms. Further geometric aspects are explored in a chapter on Hausdorff measure. The text also treats probabilistic concepts, in chapters on ergodic theory, probability spaces and random variables, Wiener measure and Brownian motion, and martingales. This text will prepare graduate students for more advanced studies in functional analysis, harmonic analysis, stochastic analysis, and geometric measure theory.

Real Analysis Measures Integrals and Applications

Author: Boris Makarov
Publisher: Springer Science & Business Media
ISBN: 1447151224
Format: PDF, ePub
Download Now
Real Analysis: Measures, Integrals and Applications is devoted to the basics of integration theory and its related topics. The main emphasis is made on the properties of the Lebesgue integral and various applications both classical and those rarely covered in literature. This book provides a detailed introduction to Lebesgue measure and integration as well as the classical results concerning integrals of multivariable functions. It examines the concept of the Hausdorff measure, the properties of the area on smooth and Lipschitz surfaces, the divergence formula, and Laplace's method for finding the asymptotic behavior of integrals. The general theory is then applied to harmonic analysis, geometry, and topology. Preliminaries are provided on probability theory, including the study of the Rademacher functions as a sequence of independent random variables. The book contains more than 600 examples and exercises. The reader who has mastered the first third of the book will be able to study other areas of mathematics that use integration, such as probability theory, statistics, functional analysis, partial probability theory, statistics, functional analysis, partial differential equations and others. Real Analysis: Measures, Integrals and Applications is intended for advanced undergraduate and graduate students in mathematics and physics. It assumes that the reader is familiar with basic linear algebra and differential calculus of functions of several variables.