Regression Analysis and Linear Models

Author: Richard B. Darlington
Publisher: Guilford Publications
ISBN: 1462521134
Format: PDF, Kindle
Download Now
Ephasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable?s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Introduction to Mediation Moderation and Conditional Process Analysis Second Edition

Author: Andrew F. Hayes
Publisher: Guilford Publications
ISBN: 1462534651
Format: PDF, Kindle
Download Now
Lauded for its easy-to-understand, conversational discussion of the fundamentals of mediation, moderation, and conditional process analysis, this book has been fully revised with 50% new content, including sections on working with multicategorical antecedent variables, the use of PROCESS version 3 for SPSS and SAS for model estimation, and annotated PROCESS v3 outputs. Using the principles of ordinary least squares regression, Andrew F. Hayes carefully explains procedures for testing hypotheses about the conditions under and the mechanisms by which causal effects operate, as well as the moderation of such mechanisms. Hayes shows how to estimate and interpret direct, indirect, and conditional effects; probe and visualize interactions; test questions about moderated mediation; and report different types of analyses. Data for all the examples are available on the companion website (www.afhayes.com), along with links to download PROCESS. New to This Edition *Chapters on using each type of analysis with multicategorical antecedent variables. *Example analyses using PROCESS v3, with annotated outputs throughout the book. *More tips and advice, including new or revised discussions of formally testing moderation of a mechanism using the index of moderated mediation; effect size in mediation analysis; comparing conditional effects in models with more than one moderat∨ using R code for visualizing interactions; distinguishing between testing interaction and probing it; and more. *Rewritten Appendix A, which provides the only documentation of PROCESS v3, including 13 new preprogrammed models that combine moderation with serial mediation or parallel and serial mediation. *Appendix B, describing how to create customized models in PROCESS v3 or edit preprogrammed models.

Regression Analysis for Categorical Moderators

Author: Herman Aguinis
Publisher: Guilford Press
ISBN: 9781572309692
Format: PDF, ePub, Docs
Download Now
Does the stability of personality vary by gender or ethnicity? Does a particular therapy work better to treat clients with one type of personality disorder than those with another? Providing a solution to thorny problems such as these, Aguinis shows readers how to better assess whether the relationship between two variables is moderated by group membership through the use of a statistical technique, moderated multiple regression (MMR). Clearly written, the book requires only basic knowledge of inferential statistics. It helps students, researchers, and practitioners determine whether a particular intervention is likely to yield dissimilar outcomes for members of various groups. Associated computer programs and data sets are available at the author's website (http: //mypage.iu.edu/ haguinis/mmr).

Doing Statistical Mediation and Moderation

Author: Paul E. Jose
Publisher: Guilford Press
ISBN: 1462508219
Format: PDF, ePub, Mobi
Download Now
"Written in a friendly, conversational style, this book offers a hands-on approach to statistical mediation and moderation for both beginning researchers and those familiar with modeling. Starting with a gentle review of regression-based analysis, Paul Jose covers basic mediation and moderation techniques before moving on to advanced topics in multilevel modeling, structural equation modeling, and hybrid combinations, such as moderated mediation. User-friendly features include numerous graphs and carefully worked-through examples; "Helpful Suggestions" about procedures and pitfalls; "Knowledge Boxes" delving into special topics, such as dummy coding; and end-of-chapter exercises and problems (with answers). The companion website provides downloadable sample data sets that are used in the book to demonstrate particular analytic strategies, and explains how researchers and students can execute analyses using Jose's online programs, MedGraph and ModGraph. Appendices present SPSS, AMOS, and Mplus syntax for conducting the key types of analyses"--

Introduction to Statistical Mediation Analysis

Author: David MacKinnon
Publisher: Routledge
ISBN: 1136676139
Format: PDF, Mobi
Download Now
This volume introduces the statistical, methodological, and conceptual aspects of mediation analysis. Applications from health, social, and developmental psychology, sociology, communication, exercise science, and epidemiology are emphasized throughout. Single-mediator, multilevel, and longitudinal models are reviewed. The author's goal is to help the reader apply mediation analysis to their own data and understand its limitations. Each chapter features an overview, numerous worked examples, a summary, and exercises (with answers to the odd numbered questions). The accompanying CD contains outputs described in the book from SAS, SPSS, LISREL, EQS, MPLUS, and CALIS, and a program to simulate the model. The notation used is consistent with existing literature on mediation in psychology. The book opens with a review of the types of research questions the mediation model addresses. Part II describes the estimation of mediation effects including assumptions, statistical tests, and the construction of confidence limits. Advanced models including mediation in path analysis, longitudinal models, multilevel data, categorical variables, and mediation in the context of moderation are then described. The book closes with a discussion of the limits of mediation analysis, additional approaches to identifying mediating variables, and future directions. Introduction to Statistical Mediation Analysis is intended for researchers and advanced students in health, social, clinical, and developmental psychology as well as communication, public health, nursing, epidemiology, and sociology. Some exposure to a graduate level research methods or statistics course is assumed. The overview of mediation analysis and the guidelines for conducting a mediation analysis will be appreciated by all readers.

Statistical Methods for Communication Science

Author: Andrew F. Hayes
Publisher: Routledge
ISBN: 1135250898
Format: PDF, Docs
Download Now
Statistical Methods for Communication Science is the only statistical methods volume currently available that focuses exclusively on statistics in communication research. Writing in a straightforward, personal style, author Andrew F. Hayes offers this accessible and thorough introduction to statistical methods, starting with the fundamentals of measurement and moving on to discuss such key topics as sampling procedures, probability, reliability, hypothesis testing, simple correlation and regression, and analyses of variance and covariance. Hayes takes readers through each topic with clear explanations and illustrations. He provides a multitude of examples, all set in the context of communication research, thus engaging readers directly and helping them to see the relevance and importance of statistics to the field of communication. Highlights of this text include: *thorough and balanced coverage of topics; *integration of classical methods with modern "resampling" approaches to inference; *consideration of practical, "real world" issues; *numerous examples and applications, all drawn from communication research; *up-to-date information, with examples justifying use of various techniques; and *a CD with macros, data sets, figures, and additional materials. This unique book can be used as a stand-alone classroom text, a supplement to traditional research methods texts, or a useful reference manual. It will be invaluable to students, faculty, researchers, and practitioners in communication, and it will serve to advance the understanding and use of statistical methods throughout the discipline.

Measurement Theory and Applications for the Social Sciences

Author: Deborah L. Bandalos
Publisher: Guilford Publications
ISBN: 1462532136
Format: PDF, Docs
Download Now
Which types of validity evidence should be considered when determining whether a scale is appropriate for a given measurement situation? What about reliability evidence? Using clear explanations illustrated by examples from across the social and behavioral sciences, this engaging text prepares students to make effective decisions about the selection, administration, scoring, interpretation, and development of measurement instruments. Coverage includes the essential measurement topics of scale development, item writing and analysis, and reliability and validity, as well as more advanced topics such as exploratory and confirmatory factor analysis, item response theory, diagnostic classification models, test bias and fairness, standard setting, and equating. End-of-chapter exercises (with answers) emphasize both computations and conceptual understanding to encourage readers to think critically about the material.

An Introduction to Statistical Learning

Author: Gareth James
Publisher: Springer Science & Business Media
ISBN: 1461471389
Format: PDF, ePub
Download Now
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Diagnostic Measurement

Author: Andr? A. Rupp
Publisher: Guilford Press
ISBN: 1606235281
Format: PDF, Mobi
Download Now
This book provides a comprehensive introduction to the theory and practice of diagnostic classification models (DCMs), which are useful for statistically driven diagnostic decision making. DCMs can be employed in a wide range of disciplines, including educational assessment and clinical psychology. For the first time in a single volume, the authors present the key conceptual underpinnings and methodological foundations for applying these models in practice. Specifically, they discuss a unified approach to DCMs, the mathematical structure of DCMs and their relationship to other latent variable models, and the implementation and estimation of DCMs using Mplus. The book's highly accessible language, real-world applications, numerous examples, and clearly annotated equations will encourage professionals and students to explore the utility and statistical properties of DCMs in their own projects. This book will appeal to professionals in the testing industry; professors and students in educational, school, clinical, and cognitive psychology. It will also serve as a useful text in doctoral-level courses in diagnostic testing, cognitive diagnostic assessment, test validity, diagnostic assessment, advanced educational measurement, psychometrics, and item response theory

Bayesian Statistics for the Social Sciences

Author: David Kaplan
Publisher: Guilford Publications
ISBN: 1462516513
Format: PDF, ePub, Docs
Download Now
Bridging the gap between traditional classical statistics and a Bayesian approach, David Kaplan provides readers with the concepts and practical skills they need to apply Bayesian methodologies to their data analysis problems. Part I addresses the elements of Bayesian inference, including exchangeability, likelihood, prior/posterior distributions, and the Bayesian central limit theorem. Part II covers Bayesian hypothesis testing, model building, and linear regression analysis, carefully explaining the differences between the Bayesian and frequentist approaches. Part III extends Bayesian statistics to multilevel modeling and modeling for continuous and categorical latent variables. Kaplan closes with a discussion of philosophical issues and argues for an "evidence-based" framework for the practice of Bayesian statistics. User-Friendly Features *Includes worked-through, substantive examples, using large-scale educational and social science databases, such as PISA (Program for International Student Assessment) and the LSAY (Longitudinal Study of American Youth). *Utilizes open-source R software programs available on CRAN (such as MCMCpack and rjags); readers do not have to master the R language and can easily adapt the example programs to fit individual needs. *Shows readers how to carefully warrant priors on the basis of empirical data. *Companion website features data and code for the book's examples, plus other resources.