Regression

Author: Ludwig Fahrmeir
Publisher: Springer-Verlag
ISBN: 3642018378
Format: PDF, ePub
Download Now
In dem Band beschreiben die Autoren erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden in einer integrierten und anwendungsorientierten Form. Um Lesern die Analyse eigener Fragestellungen zu ermöglichen, demonstrieren sie die praktische Anwendung der Konzepte und Methoden anhand ausführlicher Fallstudien. Geeignet für Studierende der Statistik sowie für Wissenschaftler und Praktiker, zum Beispiel in den Wirtschafts- und Sozialwissenschaften, der Bioinformatik und -statistik, Ökonometrie und Epidemiologie.

Regression

Author: Ludwig Fahrmeir
Publisher: Springer-Verlag
ISBN: 3540339337
Format: PDF
Download Now
Diese Einführung beschreibt erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden: integriert, einheitlich und anwendungsorientiert. Sie wendet sich an Studierende der Statistik im Wahl- und Hauptfach sowie an empirisch-statistisch und interdisziplinär arbeitende Wissenschaftler. Ebenso ist sie empfehlenswert für Praktiker, z.B. in Wirtschafts- und Sozialwissenschaften, Bioinformatik, -statistik, Ökonometrie und Epidemiologie. Anhand ausführlich vorgestellter Fallstudien demonstriert sie die praktische Anwendung der vorgestellten Konzepte und Methoden. Leser können so eigene Fragestellungen analysieren.

Regression

Author: Ludwig Fahrmeir
Publisher: Springer-Verlag
ISBN: 3642018378
Format: PDF, Docs
Download Now
In dem Band beschreiben die Autoren erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden in einer integrierten und anwendungsorientierten Form. Um Lesern die Analyse eigener Fragestellungen zu ermöglichen, demonstrieren sie die praktische Anwendung der Konzepte und Methoden anhand ausführlicher Fallstudien. Geeignet für Studierende der Statistik sowie für Wissenschaftler und Praktiker, zum Beispiel in den Wirtschafts- und Sozialwissenschaften, der Bioinformatik und -statistik, Ökonometrie und Epidemiologie.

Regression

Author: Ludwig Fahrmeir
Publisher: Springer Science & Business Media
ISBN: 3642343333
Format: PDF, ePub, Docs
Download Now
The aim of this book is an applied and unified introduction into parametric, non- and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through many real data examples and case studies. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. Thus, the book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written on an intermediate mathematical level and assumes only knowledge of basic probability, calculus, and statistics. The most important definitions and statements are concisely summarized in boxes. Two appendices describe required matrix algebra, as well as elements of probability calculus and statistical inference.

Methods and Applications of Linear Models

Author: Ronald R. Hocking
Publisher: John Wiley & Sons
ISBN: 1118593022
Format: PDF, Kindle
Download Now
Praise for the Second Edition "An essential desktop reference book . . . it should definitely be on your bookshelf." —Technometrics A thoroughly updated book, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition features innovative approaches to understanding and working with models and theory of linear regression. The Third Edition provides readers with the necessary theoretical concepts, which are presented using intuitive ideas rather than complicated proofs, to describe the inference that is appropriate for the methods being discussed. The book presents a unique discussion that combines coverage of mathematical theory of linear models with analysis of variance models, providing readers with a comprehensive understanding of both the theoretical and technical aspects of linear models. With a new focus on fixed effects models, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition also features: Newly added topics including least squares, the cell means model, and graphical inspection of data in the AVE method Frequent conceptual and numerical examples for clarifying the statistical analyses and demonstrating potential pitfalls Graphics and computations developed using JMP® software to accompany the concepts and techniques presented Numerous exercises presented to test readers and deepen their understanding of the material An ideal book for courses on linear models and linear regression at the undergraduate and graduate levels, the Third Edition of Methods and Applications of Linear Models: Regression and the Analysis of Variance is also a valuable reference for applied statisticians and researchers who utilize linear model methodology.

Measurement Error

Author: John P. Buonaccorsi
Publisher: CRC Press
ISBN: 9781420066586
Format: PDF, ePub, Docs
Download Now
Over the last 20 years, comprehensive strategies for treating measurement error in complex models and accounting for the use of extra data to estimate measurement error parameters have emerged. Focusing on both established and novel approaches, Measurement Error: Models, Methods, and Applications provides an overview of the main techniques and illustrates their application in various models. It describes the impacts of measurement errors on naive analyses that ignore them and presents ways to correct for them across a variety of statistical models, from simple one-sample problems to regression models to more complex mixed and time series models. The book covers correction methods based on known measurement error parameters, replication, internal or external validation data, and, for some models, instrumental variables. It emphasizes the use of several relatively simple methods, moment corrections, regression calibration, simulation extrapolation (SIMEX), modified estimating equation methods, and likelihood techniques. The author uses SAS-IML and Stata to implement many of the techniques in the examples. Accessible to a broad audience, this book explains how to model measurement error, the effects of ignoring it, and how to correct for it. More applied than most books on measurement error, it describes basic models and methods, their uses in a range of application areas, and the associated terminology.

Regression Analysis

Author: Ashish K. Sen
Publisher: Springer
ISBN: 3662250926
Format: PDF, Docs
Download Now
Any method of fitting equations to data may be called regression. Such equations are valuable for at least two purposes: making predictions and judging the strength of relationships. Because they provide a way of em pirically identifying how a variable is affected by other variables, regression methods have become essential in a wide range of fields, including the soeial seiences, engineering, medical research and business. Of the various methods of performing regression, least squares is the most widely used. In fact, linear least squares regression is by far the most widely used of any statistical technique. Although nonlinear least squares is covered in an appendix, this book is mainly ab out linear least squares applied to fit a single equation (as opposed to a system of equations). The writing of this book started in 1982. Since then, various drafts have been used at the University of Toronto for teaching a semester-Iong course to juniors, seniors and graduate students in a number of fields, including statistics, pharmacology, pharmacology, engineering, economics, forestry and the behav ioral seiences. Parts of the book have also been used in a quarter-Iong course given to Master's and Ph.D. students in public administration, urban plan ning and engineering at the University of Illinois at Chicago (UIC). This experience and the comments and critieisms from students helped forge the final version.

Regression Models Methods and Applications

Author: CTI Reviews
Publisher: Cram101 Textbook Reviews
ISBN: 1490258256
Format: PDF
Download Now
Facts101 is your complete guide to Regression, Models, Methods and Applications. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Methods and Applications of Longitudinal Data Analysis

Author: Xian Liu
Publisher: Elsevier
ISBN: 0128014822
Format: PDF, ePub, Mobi
Download Now
Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: descriptive methods for delineating trends over time linear mixed regression models with both fixed and random effects covariance pattern models on correlated errors generalized estimating equations nonlinear regression models for categorical repeated measurements techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Time Series Analysis

Author: Tata Subba Rao
Publisher: Elsevier
ISBN: 0444538585
Format: PDF, ePub, Mobi
Download Now
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respective areas