Robotics Vision and Control

Author: Peter Corke
Publisher: Springer Science & Business Media
ISBN: 3642201431
Format: PDF, Docs
Download Now
The practice of robotics and computer vision both involve the application of computational algorithms to data. Over the fairly recent history of the fields of robotics and computer vision a very large body of algorithms has been developed. However this body of knowledge is something of a barrier for anybody entering the field, or even looking to see if they want to enter the field — What is the right algorithm for a particular problem?, and importantly, How can I try it out without spending days coding and debugging it from the original research papers? The author has maintained two open-source MATLAB Toolboxes for more than 10 years: one for robotics and one for vision. The key strength of the Toolboxes provide a set of tools that allow the user to work with real problems, not trivial examples. For the student the book makes the algorithms accessible, the Toolbox code can be read to gain understanding, and the examples illustrate how it can be used —instant gratification in just a couple of lines of MATLAB code. The code can also be the starting point for new work, for researchers or students, by writing programs based on Toolbox functions, or modifying the Toolbox code itself. The purpose of this book is to expand on the tutorial material provided with the toolboxes, add many more examples, and to weave this into a narrative that covers robotics and computer vision separately and together. The author shows how complex problems can be decomposed and solved using just a few simple lines of code, and hopefully to inspire up and coming researchers. The topics covered are guided by the real problems observed over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes a lot of Matlab examples and figures. The book is a real walk through the fundamentals of robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and epipolar geometry, and bring it all together in a visual servo system. Additional material is provided at http://www.petercorke.com/RVC

Advances in Autonomous Robotics

Author: Guido Herrmann
Publisher: Springer
ISBN: 3642325270
Format: PDF, Docs
Download Now
This book constitutes the refereed proceedings of the 13th Conference on Towards Autonomous Robotic Systems, TAROS 2012 and the 15th Robot World Congress, FIRA 2012, held as joint conference in Bristol, UK, in August 2012. The 36 revised full papers presented together with 25 extended abstracts were carefully reviewed and selected from 89 submissions. The papers cover various topics in the field of autonomous robotics.

Mechanism Machine Robotics and Mechatronics Sciences

Author: Rany Rizk
Publisher: Springer
ISBN: 3319899112
Format: PDF, ePub, Mobi
Download Now
This volume contains the Proceedings of the First International Congress​ for the Advancement of Mechanism, Machine, Robotics and Mechatronics Sciences (ICAMMRMS-2017), held in Beirut, Lebanon, October 2017. The book consists of twenty papers in six different fields covering multiple angles of machine and robotics sciences: mechanical design, control, structural synthesis, vibration study, and manufacturing. This volume is of interest to mechanical as well as electrical engineers.

Robotics

Author: Bruno Siciliano
Publisher: Springer Science & Business Media
ISBN: 1846286417
Format: PDF, ePub
Download Now
Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLAB® code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.