Rock Stress and Its Measurement

Author: B. Amadei
Publisher: Springer Science & Business Media
ISBN: 9401153469
Format: PDF, ePub
Download Now
Rock masses are initially stressed in their current in situ state of stress and to a lesser natural state. Whether one is interested in the extent on the monitoring of stress change. formation of geological structures (folds, faults, The subject of paleostresses is only briefly intrusions, etc. ), the stability of artificial struc discussed. tures (tunnels, caverns, mines, surface excava The last 30 years have seen a major advance our knowledge and understanding of rock tions, etc. ), or the stability of boreholes, a in the in situ or virgin stress field, stress. A large body of data is now available on knowledge of along with other rock mass properties, is the state of stress in the near surface of the needed in order to predict the response of rock Earth's crust (upper 3-4km of the crust). masses to the disturbance associated with those Various theories have been proposed regarding structures. Stress in rock is usually described the origin of in situ stresses and how gravity, within the context of continuum mechanics. It is tectonics, erosion, lateral straining, rock fabric, defined at a point and is represented by a glaciation and deglaciation, topography, curva second-order Cartesian tensor with six compo ture of the Earth and other active geological nents. Because of its definition, rock stress is an features and processes contribute to the current enigmatic and fictitious quantity creating chal in situ stress field.

In Situ Rock Stress Measurement Interpretation and Application

Author: Abhinav Mishra
Publisher:
ISBN: 9781681174044
Format: PDF, ePub, Mobi
Download Now
Understanding in-situ rock stress is important in the exploration and engineering involving rock masses for mining, hydropower, tunneling, oil and gas production, and stone quarrying. Traditional methods of determining these stresses have not developed substantially to keep pace with the increasing utilization of rock masses. Contributed by a group of leading experts, this book addresses new developments in numerical modeling and advanced measuring techniques. In-Situ Rock Stress: Measurement, Interpretation and Application reflect the development in this field, covering measuring techniques, interpretation methods, and application of the in-situ stress in engineering practice. Estimate of the in-situ rock stress state can be realized by direct or indirect methods. Although the indirect method has developed rapidly in recent years, the direct field measurement is still by far dominating. Great improvements have been achieved with the 'traditional' field tests by overcoring and hydraulic fracturing, whilst the recently developed methods become matured. In addition, ideas of new methods and new instruments will make the stress estimate easier, less expensive and more reliable.

In situ Rock Stress

Author: Michael Tucker
Publisher: CRC Press
ISBN: 9780415401630
Format: PDF, ePub, Docs
Download Now
With the new classification of chronic myeloproliferative disorders, and the rise of interest in molecularly targeted therapies, this timely text brings together international experts on the topic to discuss the current technologies and their implications for the treatment of patients. This title comprehensively covers chronic myeloid leukemia and Ph-negative chronic myeloproliferative disorders and is an essential resource for all practitioners in Hematologic Oncology.

Rock Stress 03

Author: K. Sugawara
Publisher: CRC Press
ISBN: 9789058096395
Format: PDF, Kindle
Download Now
This publication contains three special lectures, six keynote addresses and sixty-eight technical papers presented at the symposium. The wide variety of topics covered are grouped in the proceedings according to subject.

Coupled Thermo Hydro Mechanical Chemical Processes in Geo systems

Author: Ove Stephansson
Publisher: Elsevier
ISBN: 9780080530062
Format: PDF, Docs
Download Now
Among the most important and exciting current steps forward in geo-engineering is the development of coupled numerical models. They represent the basic physics of geo-engineering processes which can include the effects of heat, water, mechanics and chemistry. Such models provide an integrating focus for the wide range of geo-engineering disciplines. The articles within this volume were originally presented at the inaugural GeoProc conference held in Stockholm and contain a collection of unusually high quality information not available elsewhere in an edited and coherent form. This collection not only benefits from the latest theoretical developments but also applies them to a number of practical and wide ranging applications. Examples include the environmental issues around radioactive waste disposal deep in rock, and the search for new reserves of oil and gas.

Geologically Storing Carbon

Author: Peter Cook
Publisher: CSIRO PUBLISHING
ISBN: 1486302319
Format: PDF, ePub
Download Now
Carbon capture and geological storage (CCS) is presently the only way that we can make deep cuts in emissions from fossil fuel-based, large-scale sources of CO2 such as power stations and industrial plants. But if this technology is to be acceptable to the community, it is essential that it is credibly demonstrated by world-class scientists and engineers in an open and transparent manner at a commercially significant scale. The aim of the Otway Project was to do just this. Geologically Storing Carbon provides a detailed account of the CO2CRC Otway Project, one of the most comprehensive demonstrations of the deep geological storage or geosequestration of carbon dioxide undertaken anywhere. This book of 18 comprehensive chapters written by leading experts in the field is concerned with outstanding science, but it is not just a collection of scientific papers – it is about 'learning by doing'. For example, it explains how the project was organised, managed, funded and constructed, as well as the approach taken to community issues, regulations and approvals. It also describes how to understand the site: Are the rocks mechanically suitable? Will the CO2 leak? Is there enough storage capacity? Is monitoring effective? This is the book for geologists, engineers, regulators, project developers, industry, communities or anyone who wants to better understand how a carbon storage project really 'works'. It is also for people concerned with obtaining an in-depth appreciation of one of the key technology options for decreasing greenhouse emissions to the atmosphere.

Stress Field of the Earth s Crust

Author: Arno Zang
Publisher: Springer Science & Business Media
ISBN: 9781402084447
Format: PDF, Kindle
Download Now
Stress Field of the Earth’s Crust is based on lecture notes prepared for a course offered to graduate students in the Earth sciences and engineering at University of Potsdam. In my opinion, it will undoubtedly also become a standard reference book on the desk of most scientists working with rocks, such as geophysicists, structural geologists, rock mechanics experts, as well as geotechnical and petroleum en- neers. That is because this book is concerned with what is probably the most pe- liar characteristic of rock – its initial stress condition. Rock is always under a natural state of stress, primarily a result of the gravitational and tectonic forces to which it is subjected. Crustal stresses can vary regionally and locally and can reach in places considerable magnitudes, leading to natural or man-made mechanical failure. P- existing stress distinguishes rock from most other materials and is at the core of the discipline of “Rock Mechanics”, which has been developed over the last century. Knowledge of rock stress is fundamental to understanding faulting mechanisms and earthquake triggering, to designing stable underground caverns and prod- tive oil fields, and to improving mining methods and geothermal energy extraction, among others. Several books have been written on the subject, but none has atte- ted to be as all-encompassing as the one by Zang and Stephansson.

Passive Seismic Monitoring of Induced Seismicity

Author: David W. Eaton
Publisher: Cambridge University Press
ISBN: 1108636764
Format: PDF, ePub, Mobi
Download Now
The past few decades have witnessed remarkable growth in the application of passive seismic monitoring to address a range of problems in geoscience and engineering, from large-scale tectonic studies to environmental investigations. Passive seismic methods are increasingly being used for surveillance of massive, multi-stage hydraulic fracturing and development of enhanced geothermal systems. The theoretical framework and techniques used in this emerging area draw on various established fields, such as earthquake seismology, exploration geophysics and rock mechanics. Based on university and industry courses developed by the author, this book reviews all the relevant research and technology to provide an introduction to the principles and applications of passive seismic monitoring. It integrates up-to-date case studies and interactive online exercises, making it a comprehensive and accessible resource for advanced students and researchers in geophysics and engineering, as well as industry practitioners.

Rock Mechanics in Underground Construction

Author: C. F. Leung
Publisher: World Scientific
ISBN: 9812772413
Format: PDF, Docs
Download Now
This proceedings volume contains over 300 papers on rock mechanics and engineering with contributors from all over Asia and many other parts of the world. Seven keynote papers summarize the state-of-the-art in rock engineering including topics such as underground rock caverns. The technical papers cover a wide range of rock mechanics and engineering topics: rock tunnels, caverns, mining, rock slopes and dams, rock blasting, rock burst and failure, rock properties, rock mass, rock joints, and block theory. Numerous valuable rock engineering case studies are also reported. This volume should serve as a useful reference for the engineers and researchers in rock mechanics and rock engineering. Sample Chapter(s). Chapter 1: Forensic Engineering for Underground Construction (244 KB). Contents: Tunnelling; Rock Caverns; Mining; Blasting and Dynamics; Support and Reinforcement; Rock Mass; Rock Properties; Discontinuities; Block Theory and DDA; Failure, Fracture and Burst; Dams and Slopes; Other Applications. Readership: Graduate students, academics and researchers in civil engineering and engineering mechanics.