Scaling

Author: G. I. Barenblatt
Publisher: Cambridge University Press
ISBN: 0521826578
Format: PDF, ePub, Docs
Download Now
The author describes and teaches the art of discovering scaling laws, starting from dimensional analysis and physical similarity, which are here given a modern treatment. He demonstrates the concepts of intermediate asymptotics and the renormalisation group as natural consequences of self-similarity and shows how and when these notions and tools can be used to tackle the task at hand, and when they cannot. Based on courses taught to undergraduate and graduate students, the book can also be used for self-study by biologists, chemists, astronomers, engineers and geoscientists.

Scaling Self similarity and Intermediate Asymptotics

Author: G. I. Barenblatt
Publisher: Cambridge University Press
ISBN: 9780521435222
Format: PDF, ePub
Download Now
Scaling (power-type) laws reveal the fundamental property of the phenomena--self similarity. Self-similar (scaling) phenomena repeat themselves in time and/or space. The property of self-similarity simplifies substantially the mathematical modeling of phenomena and its analysis--experimental, analytical and computational. The book begins from a non-traditional exposition of dimensional analysis, physical similarity theory and general theory of scaling phenomena. Classical examples of scaling phenomena are presented. It is demonstrated that scaling comes on a stage when the influence of fine details of initial and/or boundary conditions disappeared but the system is still far from ultimate equilibrium state (intermediate asymptotics). It is explained why the dimensional analysis as a rule is insufficient for establishing self-similarity and constructing scaling variables. Important examples of scaling phenomena for which the dimensional analysis is insufficient (self-similarities of the second kind) are presented and discussed. A close connection of intermediate asymptotics and self-similarities of the second kind with a fundamental concept of theoretical physics, the renormalization group, is explained and discussed. Numerous examples from various fields--from theoretical biology to fracture mechanics, turbulence, flame propagation, flow in porous strata, atmospheric and oceanic phenomena are presented for which the ideas of scaling, intermediate asymptotics, self-similarity and renormalization group were of decisive value in modeling.

Scaling

Author: Grigory Isaakovich Barenblatt
Publisher: Cambridge University Press
ISBN: 1107393957
Format: PDF, ePub, Docs
Download Now
Many phenomena in nature, engineering or society when seen at an intermediate distance, in space or time, exhibit the remarkable property of self-similarity: they reproduce themselves as scales change, subject to so-called scaling laws. It's crucial to know the details of these laws, so that mathematical models can be properly formulated and analysed, and the phenomena in question can be more deeply understood. In this 2003 book, the author describes and teaches the art of discovering scaling laws, starting from dimensional analysis and physical similarity, which are here given a modern treatment. He demonstrates the concepts of intermediate asymptotics and the renormalisation group as natural attributes of self-similarity and shows how and when these notions and tools can be used to tackle the task at hand, and when they cannot. Based on courses taught to undergraduate and graduate students, the book can also be used for self-study by biologists, chemists, astronomers, engineers and geoscientists.

Scaling Self similarity and Intermediate Asymptotics

Author: G. I. Barenblatt
Publisher: Cambridge University Press
ISBN: 9780521435222
Format: PDF, Mobi
Download Now
Scaling (power-type) laws reveal the fundamental property of the phenomena--self similarity. Self-similar (scaling) phenomena repeat themselves in time and/or space. The property of self-similarity simplifies substantially the mathematical modeling of phenomena and its analysis--experimental, analytical and computational. The book begins from a non-traditional exposition of dimensional analysis, physical similarity theory and general theory of scaling phenomena. Classical examples of scaling phenomena are presented. It is demonstrated that scaling comes on a stage when the influence of fine details of initial and/or boundary conditions disappeared but the system is still far from ultimate equilibrium state (intermediate asymptotics). It is explained why the dimensional analysis as a rule is insufficient for establishing self-similarity and constructing scaling variables. Important examples of scaling phenomena for which the dimensional analysis is insufficient (self-similarities of the second kind) are presented and discussed. A close connection of intermediate asymptotics and self-similarities of the second kind with a fundamental concept of theoretical physics, the renormalization group, is explained and discussed. Numerous examples from various fields--from theoretical biology to fracture mechanics, turbulence, flame propagation, flow in porous strata, atmospheric and oceanic phenomena are presented for which the ideas of scaling, intermediate asymptotics, self-similarity and renormalization group were of decisive value in modeling.

Flow Deformation and Fracture

Author: Grigory Isaakovich Barenblatt
Publisher: Cambridge University Press
ISBN: 1139915746
Format: PDF
Download Now
Over forty years of teaching experience are distilled into this text. The guiding principle is the wide use of the concept of intermediate asymptotics, which enables the natural introduction of the modeling of real bodies by continua. Beginning with a detailed explanation of the continuum approximation for the mathematical modeling of the motion and equilibrium of real bodies, the author continues with a general survey of the necessary methods and tools for analyzing models. Next, specific idealized approximations are presented, including ideal incompressible fluids, elastic bodies and Newtonian viscous fluids. The author not only presents general concepts but also devotes chapters to examining significant problems, including turbulence, wave-propagation, defects and cracks, fatigue and fracture. Each of these applications reveals essential information about the particular approximation. The author's tried and tested approach reveals insights that will be valued by every teacher and student of mechanics.

Mathematics Applied to Deterministic Problems in the Natural Sciences

Author: C. C. Lin
Publisher: SIAM
ISBN: 9781611971347
Format: PDF, ePub
Download Now
Addresses the construction, analysis, and intepretation of mathematical models that shed light on significant problems in the physical sciences. The authors' case studies approach leads to excitement in teaching realistic problems. The many problems and exercises reinforce, test and extend the reader's understanding. This reprint volume may be used as an upper level undergraduate or graduate textbook as well as a reference for researchers working on fluid mechanics, elasticity, perturbation methods, dimensional analysis, numerical analysis, continuum mechanics and differential equations.

An Introduction to Magnetohydrodynamics

Author: P. A. Davidson
Publisher: Cambridge University Press
ISBN: 9780521794879
Format: PDF
Download Now
This book is an introductory text on magnetohydrodynamics (MHD) - the study of the interaction of magnetic fields and conducting fluids.

Introduction to Magnetohydrodynamics

Author: P. A. Davidson
Publisher: Cambridge University Press
ISBN: 1107160162
Format: PDF, Mobi
Download Now
Comprehensive textbook prioritising physical ideas over mathematical detail. New material includes fusion plasma magnetohydrodynamics.

Practical Applied Mathematics

Author: Sam Howison
Publisher: Cambridge University Press
ISBN: 9780521842747
Format: PDF, ePub, Docs
Download Now
Drawing from a wide variety of mathematical subjects, this book aims to show how mathematics is realised in practice in the everyday world. Dozens of applications are used to show that applied mathematics is much more than a series of academic calculations. Mathematical topics covered include distributions, ordinary and partial differential equations, and asymptotic methods as well as basics of modelling. The range of applications is similarly varied, from the modelling of hair to piano tuning, egg incubation and traffic flow. The style is informal but not superficial. In addition, the text is supplemented by a large number of exercises and sideline discussions, assisting the reader's grasp of the material. Used either in the classroom by upper-undergraduate students, or as extra reading for any applied mathematician, this book illustrates how the reader's knowledge can be used to describe the world around them.

The Thermomechanics of Plasticity and Fracture

Author: Gerard A. Maugin
Publisher: Cambridge University Press
ISBN: 9780521397803
Format: PDF, ePub, Docs
Download Now
This book concentrates upon the mathematical theory of plasticity and fracture as opposed to the physical theory of these fields, presented in the thermomechanical framework.