Second Harmonic Generation Imaging

Author: Francesco S. Pavone
Publisher: Taylor & Francis
ISBN: 1439849153
Format: PDF
Download Now
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experimental and analytical methods Highlights representative biomedical and medical applications in imaging cancer, fibroses, autoimmune diseases, connective tissue disorders, eye pathologies, and cardiovascular disease Historically, clinical imaging at the cellular and tissue level has been performed by pathologists on ex vivo biopsies removed by the surgeon. While histology remains the "gold standard" for pathologists, its interpretation remains highly subjective. Much of SHG research has focused on developing more quantitative, objective metrics. A tutorial for newcomers and an up-to-date review for experts, this book explores how SHG may be used to more precisely image a wide range of pathological conditions and diseases.

Imaging in Cellular and Tissue Engineering

Author: Hanry Yu
Publisher: CRC Press
ISBN: 1439848033
Format: PDF, ePub, Mobi
Download Now
Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tissues (such as bone, cartilage, blood vessels, and bladder) and more novel artificially created support systems (such as artificial pancreas and bioartificial liver). Each chapter describes a particular application, relevant optical instrumentation, physical principles governing the imaging method, and strengths and weaknesses of the technique. The book also presents current and emerging data processing procedures. As the field of tissue engineering moves from creating simpler outer body parts to more sophisticated internal organs, researchers need to evaluate and control how well the tissues are engineered and integrated into the living body. Suitable for both experts and newcomers in bioengineering and biomedical imaging, this book shows researchers how to apply imaging techniques to next-generation engineered cells and tissues. It helps them assess the suitability of specific imaging modalities for applications with various functional requirements.

Natural Biomarkers for Cellular Metabolism

Author: Vladimir V. Ghukasyan
Publisher: CRC Press
ISBN: 1466509988
Format: PDF, ePub, Docs
Download Now
From the Lab to Clinical Settings—Advances in Quantitative, Noninvasive Optical Diagnostics Noninvasive fluorescence imaging techniques, novel fluorescent labels, and natural biomarkers are revolutionizing our knowledge of cellular processes, signaling and metabolic pathways, the underlying mechanisms for health problems, and the identification of new therapeutic targets for drug discoveries. Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications delves into the current state of knowledge on intrinsic fluorescent biomarkers and highlights recent developments in using these biomarkers for the metabolic mapping and clinical diagnosis of healthy and diseased cells and tissues. Autofluorescent Biomarkers for Biomedical Diagnostics The book’s first section introduces the fundamentals of cellular energy metabolism as well as natural biomarkers within the context of their biological functions. The second section outlines the theoretical and technical background of quantitative, noninvasive, autofluorescence microscopy and spectroscopy methods, including experimental design, calibration, pitfalls, and remedies of data acquisition and analysis. The last two sections highlight advances in biomedical and biochemical applications, such as monitoring stem cell differentiation in engineered tissues and diagnosing cancer and ophthalmic diseases quantitatively and noninvasively. Tailored to Interdisciplinary Researchers Covering cell biology, imaging techniques, and clinical diagnostics, this book provides readers with a complete guide to studying cellular/tissue metabolism under healthy, diseased, and environment-induced stress conditions using natural biomarkers. The book is designed for graduate and advanced undergraduate students, biophysics instructors, medical researchers, and those in pharmaceutical R&D.

Multi Parametric Live Cell Microscopy of 3D Tissue Models

Author: Ruslan I. Dmitriev
Publisher: Springer
ISBN: 3319673580
Format: PDF, ePub
Download Now
This book provides an essential overview of existing state-of-the-art quantitative imaging methodologies and protocols (intensity-based ratiometric and FLIM/ PLIM). A variety of applications are covered, including multi-parametric quantitative imaging in intestinal organoid culture, autofluorescence imaging in cancer and stem cell biology, Ca2+ imaging in neural ex vivo tissue models, as well as multi-parametric imaging of pH and viscosity in cancer biology. The current state-of-the-art of 3D tissue models and their compatibility with live cell imaging is also covered. This is an ideal book for specialists working in tissue engineering and designing novel biomaterial.

Quantitative Imaging in Cell Biology

Author:
Publisher: Academic Press
ISBN: 0124202012
Format: PDF, Mobi
Download Now
This new volume, number 123, of Methods in Cell Biology looks at methods for quantitative imaging in cell biology. It covers both theoretical and practical aspects of using optical fluorescence microscopy and image analysis techniques for quantitative applications. The introductory chapters cover fundamental concepts and techniques important for obtaining accurate and precise quantitative data from imaging systems. These chapters address how choice of microscope, fluorophores, and digital detector impact the quality of quantitative data, and include step-by-step protocols for capturing and analyzing quantitative images. Common quantitative applications, including co-localization, ratiometric imaging, and counting molecules, are covered in detail. Practical chapters cover topics critical to getting the most out of your imaging system, from microscope maintenance to creating standardized samples for measuring resolution. Later chapters cover recent advances in quantitative imaging techniques, including super-resolution and light sheet microscopy. With cutting-edge material, this comprehensive collection is intended to guide researchers for years to come. Covers sections on model systems and functional studies, imaging-based approaches and emerging studies Chapters are written by experts in the field Cutting-edge material

Comprehensive Biomedical Physics

Author:
Publisher: Newnes
ISBN: 0444536337
Format: PDF
Download Now
Comprehensive Biomedical Physics is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color

Membrane Potential Imaging in the Nervous System and Heart

Author: Marco Canepari
Publisher: Springer
ISBN: 3319176412
Format: PDF, ePub, Mobi
Download Now
This volume discusses membrane potential imaging in the nervous system and in the heart and modern optical recording technology. Additionally, it covers organic and genetically-encoded voltage-sensitive dyes; membrane potential imaging from individual neurons, brain slices, and brains in vivo; optical imaging of cardiac tissue and arrhythmias; bio-photonics modelling. This is an expanded and fully-updated second edition, reflecting all the recent advances in this field. Twenty chapters, all authored by leading names in the field, are cohesively structured into four sections. The opening section focuses on the history and principles of membrane potential imaging and lends context to the following sections, which examine applications in single neurons, networks, large neuronal populations and the heart. Topics discussed include population membrane potential signals in development of the vertebrate nervous system, use of membrane potential imaging from dendrites and axons, and depth-resolved optical imaging of cardiac activation and repolarization. The final section discusses the potential – and limitations – for new developments in the field, including new technology such as non-linear optics, advanced microscope designs and genetically encoded voltage sensors. Membrane Potential Imaging in the Nervous System and Heart is ideal for neurologists, electro physiologists, cardiologists and those who are interested in the applications and the future of membrane potential imaging.

Multiphoton Microscopy and Fluorescence Lifetime Imaging

Author: Karsten König
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110429985
Format: PDF, Mobi
Download Now
This monograph demonstrates the latest developments in two-photon fluorescence microscopy and second-harmonic generation (SHG) microscopy, including coverage of high-resolution microscopy methods, such as STED microscopy. A special focus lies on clinical applications of these methods, e.g. in dermatology, ophtalmology, neuro sciences and cell biology.

Diagnostic Ultrasound Imaging Inside Out

Author: Thomas L. Szabo
Publisher: Academic Press
ISBN: 012396542X
Format: PDF, Kindle
Download Now
Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models

Imaging in Dermatology

Author: Michael R. Hamblin
Publisher: Academic Press
ISBN: 9780128028384
Format: PDF, Mobi
Download Now
Imaging in Dermatology covers a large number of topics in dermatological imaging, the use of lasers in dermatology studies, and the implications of using these technologies in research. Written by the experts working in these exciting fields, the book explicitly addresses not only current applications of nanotechnology, but also discusses future trends of these ever-growing and rapidly changing fields, providing clinicians and researchers with a clear understanding of the advantages and challenges of laser and imaging technologies in skin medicine today, along with the cellular and molecular effects of these technologies. Outlines the fundamentals of imaging and lasers for dermatology in clinical and research settings Provides knowledge of current and future applications of dermatological imaging and lasers Coherently structured book written by the experts working in the fields covered