Seismic Effects on Structures

Author: E. Juhásová
Publisher: Elsevier
ISBN: 0444598979
Format: PDF, Mobi
Download Now
This monograph deals with the problem of dynamic behaviour and seismic response of structures which are designed and constructed in seismic regions. Extensive attention is given to description of measuring methods, methods of evaluation of results and determination of dynamic properties of structures. The questions of linear and non-linear seismic response are solved taking into account the peculiarities of stiffness and damping and the demands of proper seismic design and the protecting of structures against unfavourable seismic effects. There is detailed analysis of torsional sesimic effects on structures with asymmetrical disposition in plan, of the influence of higher axial forces on the seismic response and of the problems of soil-structure interaction. The experimental results are extensively documented, with graphs, tables, photographs and a keyword index. This volume will interest structural engineers, engineers-designers, geophysicists, mechanical and geotechnical engineers. It is intended to serve both readers already acquainted with problems of earthquake engineering and beginners in this field.

Special Topics in Earthquake Geotechnical Engineering

Author: Mohamed A. Sakr
Publisher: Springer Science & Business Media
ISBN: 9400720602
Format: PDF
Download Now
Geotechnical Earthquake Engineering and Soil Dynamics, as well as their interface with Engineering Seismology, Geophysics and Seismology, have all made remarkable progress over the past 15 years, mainly due to the development of instrumented large scale experimental facilities, to the increase in the quantity and quality of recorded earthquake data, to the numerous well-documented case studies from recent strong earthquakes as well as enhanced computer capabilities. One of the major factors contributing to the aforementioned progress is the increasing social need for a safe urban environment, large infrastructures and essential facilities. The main scope of our book is to provide the geotechnical engineers, geologists and seismologists, with the most recent advances and developments in the area of earthquake geotechnical engineering, seismology and soil dynamics.

Recent Advances in Earthquake Geotechnical Engineering and Microzonation

Author: Atilla Ansal
Publisher: Springer Science & Business Media
ISBN: 1402025289
Format: PDF, Kindle
Download Now
Outstanding advances have been achieved on Earthquake Geotechnical Engineering and Microzonation in the last decade mostly due to the increase in the recorded instrumental in-situ data and large number of case studies conducted in analyzing the observed effects during the recent major earthquakes. During the 15th International Conference on Soil Mechanics and Geotechnical Engineering held in Istanbul in August 2001, the Technical Committee of Earthquake Geotechnical Engineering, (TC4) of the International Society of Soil Mechanics and Geotechnical Engineering organised a regional seminar on Geotechnical Earthquake Engineering and Microzonation where an effort has been made to present the recent advances in the field by eminent scientists and researchers. The book idea was first suggested by the participants of this seminar. The purpose of this book as well as of the seminar was to present the broad spectrum of earthquake geotechnical engineering and seismic microzonation including strong ground motion, site characterisation, site effects, liquefaction, seismic microzonation, solid waste landfills and foundation engineering. The subject matter requires multidisciplinary input from different fields of engineering seismology, soil dynamics, geotechnical and structural engineering. The chapters in this book are prepared by some of the distinguished lecturers who took part in the seminar supplemented with contributions of few distinguished experts in the field of earthquake geotechnical engineering. The editor would like to express his gratitude to all authors for their interest and efforts in preparing their manuscripts. Without their enthusiasm and support, it would not have been possible to complete this book.

Seismic Analysis and Design of Retaining Walls Buried Structures Slopes and Embankments

Author: Donald G. Anderson
Publisher: Transportation Research Board
ISBN: 0309117658
Format: PDF, Docs
Download Now
This report explores analytical and design methods for the seismic design of retaining walls, buried structures, slopes, and embankments. The Final Report is organized into two volumes. NCHRP Report 611 is Volume 1 of this study. Volume 2, which is only available online, presents the proposed specifications, commentaries, and example problems for the retaining walls, slopes and embankments, and buried structures.

Dynamic Soil Structure Interaction

Author: C. Zhang
Publisher: Elsevier
ISBN: 9780080530581
Format: PDF, ePub, Docs
Download Now
Dynamic Soil-structure interaction is one of the major topics in earthquake engineering and soil dynamics since it is closely related to the safety evaluation of many important engineering projects, such as nuclear power plants, to resist earthquakes. In dealing with the analysis of dynamic soil-structure interactions, one of the most difficult tasks is the modeling of unbounded media. To solve this problem, many numerical methods and techniques have been developed. This book summarizes the most recent developments and applications in the field of dynamic soil-structure interaction, both in China and Switzerland. An excellent book for scientists and engineers in civil engineering, structural engineering, geotechnical engineering and earthquake engineering.

Soil Dynamics and Earthquake Geotechnical Engineering

Author: Boominathan Adimoolam
Publisher: Springer
ISBN: 9811305625
Format: PDF, Kindle
Download Now
This book gathers selected proceedings of the annual conference of the Indian Geotechnical Society, and covers various aspects of soil dynamics and earthquake geotechnical engineering. The book includes a wide range of studies on seismic response of dams, foundation-soil systems, natural and man-made slopes, reinforced-earth walls, base isolation systems and so on, especially focusing on the soil dynamics and case studies from the Indian subcontinent. The book also includes chapters addressing related issues such as landslide risk assessments, liquefaction mitigation, dynamic analysis of mechanized tunneling, and advanced seismic soil-structure-interaction analysis. Given its breadth of coverage, the book offers a useful guide for researchers and practicing civil engineers alike.

Soil Foundation Structure Interaction

Author: Rolando P. Orense
Publisher: CRC Press
ISBN: 0203838203
Format: PDF, ePub
Download Now
Soil-Foundation-Structure Interaction contains selected papers presented at the International Workshop on Soil-Foundation-Structure Interaction held in Auckland, New Zealand from 26-27 November 2009. The workshop was the venue for an international exchange of ideas, disseminating information about experiments, numerical models and practical engineering problems relating to soil-foundation-structure interaction. A topic of long standing interest to both structural and geotechnical engineers is what is traditionally known as soil-structure interaction (SSI). For a long period, this has involved linear elastic interaction between the foundation and the underlying soil and the appropriate analysis is well developed for both static and dynamic interaction. In recent years, there has been a growing interest in considering nonlinear soil-foundation interaction in the design of shallow foundations, both for static and earthquake loading. To distinguish these approaches from the classical linear elastic soil-structure interaction, the term soil-foundation-structure-interaction (SFSI) has been coined recently. The development of various approaches is occurring rapidly in many research groups all over the world, with the inclusion of nonlinear structure and nonlinear soil interaction using FEM-based numerical methods, as well as the use of shallow foundation macro-elements as an alternative to using finite elements. The workshop brought together representatives from several of these groups to review the current state of development, discuss the potential for application in foundation design, and consider how work in this area might develop in the next few years. The emphasis in the workshop was on application of these ideas to the foundation design process. The book will be much of interest to post-graduates in Foundation Engineering, Earthquake Geotechnical Engineering, Earthquake Engineering, and Advanced Structural Dynamics.