Set Theory An Introduction To Independence Proofs

Author: K. Kunen
Publisher: Elsevier
ISBN: 0080570585
Format: PDF, Mobi
Download Now
Studies in Logic and the Foundations of Mathematics, Volume 102: Set Theory: An Introduction to Independence Proofs offers an introduction to relative consistency proofs in axiomatic set theory, including combinatorics, sets, trees, and forcing. The book first tackles the foundations of set theory and infinitary combinatorics. Discussions focus on the Suslin problem, Martin's axiom, almost disjoint and quasi-disjoint sets, trees, extensionality and comprehension, relations, functions, and well-ordering, ordinals, cardinals, and real numbers. The manuscript then ponders on well-founded sets and easy consistency proofs, including relativization, absoluteness, reflection theorems, properties of well-founded sets, and induction and recursion on well-founded relations. The publication examines constructible sets, forcing, and iterated forcing. Topics include Easton forcing, general iterated forcing, Cohen model, forcing with partial functions of larger cardinality, forcing with finite partial functions, and general extensions. The manuscript is a dependable source of information for mathematicians and researchers interested in set theory.

Set Theory

Author: Kenneth Kunen
Publisher: Elsevier Science Limited
ISBN: 9780444854018
Format: PDF, ePub, Docs
Download Now

Classical Descriptive Set Theory

Author: Alexander Kechris
Publisher: Springer Science & Business Media
ISBN: 1461241901
Format: PDF, ePub, Mobi
Download Now
Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.

The Foundations of Mathematics

Author: Kenneth Kunen
Publisher:
ISBN: 9781904987147
Format: PDF, Docs
Download Now
Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.

Recursion Theory

Author: Chi Tat Chong
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110275643
Format: PDF
Download Now
This monograph presents recursion theory from a generalized and largely global point of view. A major theme is the study of the structures of degrees arising from two key notions of reducibility, the Turing degrees and the hyperdegrees, using ideas and techniques beyond those of classical recursion theory. These include structure theory, hyperarithmetic determinacy and rigidity, basis theorems, independence results on Turing degrees, as well as applications to higher randomness.

Combinatorial Set Theory

Author: Lorenz J. Halbeisen
Publisher: Springer Science & Business Media
ISBN: 9781447121732
Format: PDF, Docs
Download Now
This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.

Introduction to Cardinal Arithmetic

Author: Michael Holz
Publisher: Birkhäuser
ISBN: 3034603304
Format: PDF, Kindle
Download Now
This book is an introduction to modern cardinal arithmetic, developed in the frame of the axioms of Zermelo-Fraenkel set theory together with the axiom of choice. It splits into three parts. Part one, which is contained in Chapter 1, describes the classical cardinal arithmetic due to Bernstein, Cantor, Hausdorff, Konig, and Tarski. The results were found in the years between 1870 and 1930. Part two, which is Chapter 2, characterizes the development of cardinal arith metic in the seventies, which was led by Galvin, Hajnal, and Silver. The third part, contained in Chapters 3 to 9, presents the fundamental investigations in pcf-theory which has been developed by S. Shelah to answer the questions left open in the seventies. All theorems presented in Chapter 3 and Chapters 5 to 9 are due to Shelah, unless otherwise stated. We are greatly indebted to all those set theorists whose work we have tried to expound. Concerning the literature we owe very much to S. Shelah's book [Sh5] and to the article by M. R. Burke and M. Magidor [BM] which also initiated our students' interest for Shelah's pcf-theory.

Set Theory for the Working Mathematician

Author: Krzysztof Ciesielski
Publisher: Cambridge University Press
ISBN: 9780521594653
Format: PDF, ePub, Mobi
Download Now
Presents those methods of modern set theory most applicable to other areas of pure mathematics.

Set Theory An Introduction

Author: Robert L. Vaught
Publisher: Springer Science & Business Media
ISBN: 9780817642563
Format: PDF, ePub, Mobi
Download Now
An excellent undergraduate text on set theory that could be used in courses taught in mathematics and philosophy departments. The intuitive development in the first chapters also makes the book suitable for self study.