Sets Logic and Maths for Computing

Author: David Makinson
Publisher: Springer Science & Business Media
ISBN: 1447125002
Format: PDF, Docs
Download Now
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.

Proofs and Algorithms

Author: Gilles Dowek
Publisher: Springer Science & Business Media
ISBN: 9780857291219
Format: PDF, Mobi
Download Now
Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.

Foundation Mathematics for Computer Science

Author: John Vince
Publisher: Springer
ISBN: 3319214373
Format: PDF, Docs
Download Now
John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.

Fundamentals of Discrete Math for Computer Science

Author: Tom Jenkyns
Publisher: Springer Science & Business Media
ISBN: 1447140699
Format: PDF
Download Now
This textbook provides an engaging and motivational introduction to traditional topics in discrete mathematics, in a manner specifically designed to appeal to computer science students. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Clearly structured and interactive in nature, the book presents detailed walkthroughs of several algorithms, stimulating a conversation with the reader through informal commentary and provocative questions. Features: no university-level background in mathematics required; ideally structured for classroom-use and self-study, with modular chapters following ACM curriculum recommendations; describes mathematical processes in an algorithmic manner; contains examples and exercises throughout the text, and highlights the most important concepts in each section; selects examples that demonstrate a practical use for the concept in question.

Modelling Computing Systems

Author: Faron Moller
Publisher: Springer
ISBN: 9781848003217
Format: PDF, Mobi
Download Now
This engaging text presents the fundamental mathematics and modelling techniques for computing systems in a novel and light-hearted way, which can be easily followed by students at the very beginning of their university education. Key concepts are taught through a large collection of challenging yet fun mathematical games and logical puzzles that require no prior knowledge about computers. The text begins with intuition and examples as a basis from which precise concepts are then developed; demonstrating how, by working within the confines of a precise structured method, the occurrence of errors in the system can be drastically reduced. Features: demonstrates how game theory provides a paradigm for an intuitive understanding of the nature of computation; contains more than 400 exercises throughout the text, with detailed solutions to half of these presented at the end of the book, together with numerous theorems, definitions and examples; describes a modelling approach based on state transition systems.

Mathematics for Computer Graphics

Author: John A. Vince
Publisher: Springer Science & Business Media
ISBN: 9781849960236
Format: PDF, ePub, Docs
Download Now
John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD, and other areas of computer graphics. Covering all the mathematical techniques required to resolve geometric problems and design computer programs for computer graphic applications, each chapter explores a specific mathematical topic prior to moving forward into the more advanced areas of matrix transforms, 3D curves and surface patches. Problem-solving techniques using vector analysis and geometric algebra are also discussed. All the key areas are covered including: Numbers, Algebra, Trigonometry, Coordinate geometry, Transforms, Vectors, Curves and surfaces, Barycentric coordinates, Analytic geometry. Plus – and unusually in a student textbook – a chapter on geometric algebra is included.

Logic in Computer Science

Author: Michael Huth
Publisher: Cambridge University Press
ISBN: 113945305X
Format: PDF
Download Now
Recent years have seen the development of powerful tools for verifying hardware and software systems, as companies worldwide realise the need for improved means of validating their products. There is increasing demand for training in basic methods in formal reasoning so that students can gain proficiency in logic-based verification methods. The second edition of this successful textbook addresses both those requirements, by continuing to provide a clear introduction to formal reasoning which is both relevant to the needs of modern computer science and rigorous enough for practical application. Improvements to the first edition have been made throughout, with extra and expanded sections on SAT solvers, existential/universal second-order logic, micro-models, programming by contract and total correctness. The coverage of model-checking has been substantially updated. Further exercises have been added. Internet support for the book includes worked solutions for all exercises for teachers, and model solutions to some exercises for students.

Applied Logic for Computer Scientists

Author: Mauricio Ayala-Rincón
Publisher: Springer
ISBN: 3319516531
Format: PDF, ePub, Docs
Download Now
This book provides an introduction to logic and mathematical induction which are the basis of any deductive computational framework. A strong mathematical foundation of the logical engines available in modern proof assistants, such as the PVS verification system, is essential for computer scientists, mathematicians and engineers to increment their capabilities to provide formal proofs of theorems and to certify the robustness of software and hardware systems. The authors present a concise overview of the necessary computational and mathematical aspects of ‘logic’, placing emphasis on both natural deduction and sequent calculus. Differences between constructive and classical logic are highlighted through several examples and exercises. Without neglecting classical aspects of computational logic, the authors also highlight the connections between logical deduction rules and proof commands in proof assistants, presenting simple examples of formalizations of the correctness of algebraic functions and algorithms in PVS. Applied Logic for Computer Scientists will not only benefit students of computer science and mathematics but also software, hardware, automation, electrical and mechatronic engineers who are interested in the application of formal methods and the related computational tools to provide mathematical certificates of the quality and accuracy of their products and technologies.

Rigorous Software Development

Author: José Bacelar Almeida
Publisher: Springer Science & Business Media
ISBN: 9780857290182
Format: PDF, Mobi
Download Now
The use of mathematical methods in the development of software is essential when reliable systems are sought; in particular they are now strongly recommended by the official norms adopted in the production of critical software. Program Verification is the area of computer science that studies mathematical methods for checking that a program conforms to its specification. This text is a self-contained introduction to program verification using logic-based methods, presented in the broader context of formal methods for software engineering. The idea of specifying the behaviour of individual software components by attaching contracts to them is now a widely followed approach in program development, which has given rise notably to the development of a number of behavioural interface specification languages and program verification tools. A foundation for the static verification of programs based on contract-annotated routines is laid out in the book. These can be independently verified, which provides a modular approach to the verification of software. The text assumes only basic knowledge of standard mathematical concepts that should be familiar to any computer science student. It includes a self-contained introduction to propositional logic and first-order reasoning with theories, followed by a study of program verification that combines theoretical and practical aspects - from a program logic (a variant of Hoare logic for programs containing user-provided annotations) to the use of a realistic tool for the verification of C programs (annotated using the ACSL specification language), through the generation of verification conditions and the static verification of runtime errors.

Mathematics of Discrete Structures for Computer Science

Author: Gordon J. Pace
Publisher: Springer Science & Business Media
ISBN: 3642298397
Format: PDF, ePub, Mobi
Download Now
Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.