Smoothing Splines

Author: Yuedong Wang
Publisher: CRC Press
ISBN: 1420077562
Format: PDF
Download Now
A general class of powerful and flexible modeling techniques, spline smoothing has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. Smoothing Splines: Methods and Applications covers basic smoothing spline models, including polynomial, periodic, spherical, thin-plate, L-, and partial splines, as well as more advanced models, such as smoothing spline ANOVA, extended and generalized smoothing spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric regression, and semiparametric mixed-effects models. It also presents methods for model selection and inference. The book provides unified frameworks for estimation, inference, and software implementation by using the general forms of nonparametric/semiparametric, linear/nonlinear, and fixed/mixed smoothing spline models. The theory of reproducing kernel Hilbert space (RKHS) is used to present various smoothing spline models in a unified fashion. Although this approach can be technical and difficult, the author makes the advanced smoothing spline methodology based on RKHS accessible to practitioners and students. He offers a gentle introduction to RKHS, keeps theory at a minimum level, and explains how RKHS can be used to construct spline models. Smoothing Splines offers a balanced mix of methodology, computation, implementation, software, and applications. It uses R to perform all data analyses and includes a host of real data examples from astronomy, economics, medicine, and meteorology. The codes for all examples, along with related developments, can be found on the book’s web page.

Nonparametric Regression and Generalized Linear Models

Author: P.J. Green
Publisher: CRC Press
ISBN: 9780412300400
Format: PDF, ePub, Mobi
Download Now
In recent years, there has been a great deal of interest and activity in the general area of nonparametric smoothing in statistics. This monograph concentrates on the roughness penalty method and shows how this technique provides a unifying approach to a wide range of smoothing problems. The method allows parametric assumptions to be realized in regression problems, in those approached by generalized linear modelling, and in many other contexts. The emphasis throughout is methodological rather than theoretical, and it concentrates on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. Some publicly available software is also discussed. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students and other encountering the material for the first time.

Local Polynomial Modelling and Its Applications

Author: Jianqing Fan
Publisher: CRC Press
ISBN: 9780412983214
Format: PDF, ePub, Mobi
Download Now
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.

Smoothing Spline ANOVA Models

Author: Chong Gu
Publisher: Springer Science & Business Media
ISBN: 1475736835
Format: PDF, Kindle
Download Now
Smoothing methods are an active area of research. In this book, the author presents a comprehensive treatment of penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored life time data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. Most of the computational and data analytical tools discussed in the book are implemented in R, an open-source clone of the popular S/S- PLUS language.

Sustainable Electrical Power Resources through Energy Optimization and Future Engineering

Author: Shaharin Anwar Sulaiman
Publisher: Springer
ISBN: 9811304351
Format: PDF, ePub, Docs
Download Now
This book presents recent science and engineering research in the field of conventional and renewable energy, energy efficiency and optimization, discussing problems such as availability, peak load and reliability of sustainable supply for power to consumers. Such research is imperative since efficient and environmentally friendly solutions are critical in modern electricity production and transmission.

Generalized Additive Models

Author: Simon N. Wood
Publisher: CRC Press
ISBN: 1498728375
Format: PDF, Docs
Download Now
The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

Generalized Additive Models

Author: T.J. Hastie
Publisher: Routledge
ISBN: 1351445960
Format: PDF
Download Now
This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.

Spline Functions Basic Theory

Author: Larry Schumaker
Publisher: Cambridge University Press
ISBN: 1139463438
Format: PDF, ePub
Download Now
This classic work continues to offer a comprehensive treatment of the theory of univariate and tensor-product splines. It will be of interest to researchers and students working in applied analysis, numerical analysis, computer science, and engineering. The material covered provides the reader with the necessary tools for understanding the many applications of splines in such diverse areas as approximation theory, computer-aided geometric design, curve and surface design and fitting, image processing, numerical solution of differential equations, and increasingly in business and the biosciences. This new edition includes a supplement outlining some of the major advances in the theory since 1981, and some 250 new references. It can be used as the main or supplementary text for courses in splines, approximation theory or numerical analysis.

Spline Models for Observational Data

Author: Grace Wahba
Publisher: SIAM
ISBN: 0898712440
Format: PDF, ePub, Mobi
Download Now
This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a number of problems within this framework. Methods for including side conditions and other prior information in solving ill posed inverse problems are provided. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals.

Semialgebraic Statistics and Latent Tree Models

Author: Piotr Zwiernik
Publisher: CRC Press
ISBN: 1466576227
Format: PDF
Download Now
Semialgebraic Statistics and Latent Tree Models explains how to analyze statistical models with hidden (latent) variables. It takes a systematic, geometric approach to studying the semialgebraic structure of latent tree models. The first part of the book gives a general introduction to key concepts in algebraic statistics, focusing on methods that are helpful in the study of models with hidden variables. The author uses tensor geometry as a natural language to deal with multivariate probability distributions, develops new combinatorial tools to study models with hidden data, and describes the semialgebraic structure of statistical models. The second part illustrates important examples of tree models with hidden variables. The book discusses the underlying models and related combinatorial concepts of phylogenetic trees as well as the local and global geometry of latent tree models. It also extends previous results to Gaussian latent tree models. This book shows you how both combinatorics and algebraic geometry enable a better understanding of latent tree models. It contains many results on the geometry of the models, including a detailed analysis of identifiability and the defining polynomial constraints.