Spatial Data Mining

Author: Deren Li
Publisher: Springer
ISBN: 3662485389
Format: PDF, Mobi
Download Now
· This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.

Quality Aspects in Spatial Data Mining

Author: Alfred Stein
Publisher: CRC Press
ISBN: 1420069276
Format: PDF, ePub, Mobi
Download Now
Describes the State-of-the-Art in Spatial Data Mining, Focuses on Data Quality Substantial progress has been made toward developing effective techniques for spatial information processing in recent years. This science deals with models of reality in a GIS, however, and not with reality itself. Therefore, spatial information processes are often imprecise, allowing for much interpretation of abstract figures and data. Quality Aspects in Spatial Data Mining introduces practical and theoretical solutions for making sense of the often chaotic and overwhelming amount of concrete data available to researchers. In this cohesive collection of peer-reviewed chapters, field authorities present the latest field advancements and cover such essential areas as data acquisition, geoinformation theory, spatial statistics, and dissemination. Each chapter debuts with an editorial preview of each topic from a conceptual, applied, and methodological point of view, making it easier for researchers to judge which information is most beneficial to their work. Chapters Evolve From Error Propagation and Spatial Statistics to Address Relevant Applications The book advises the use of granular computing as a means of circumventing spatial complexities. This counter-application to traditional computing allows for the calculation of imprecise probabilities – the kind of information that the spatial information systems community wrestles with much of the time. Under the editorial guidance of internationally respected geoinformatics experts, this indispensable volume addresses quality aspects in the entire spatial data mining process, from data acquisition to end user. It also alleviates what is often field researchers’ most daunting task by organizing the wealth of concrete spatial data available into one convenient source, thereby advancing the frontiers of spatial information systems.

Geographic Data Mining and Knowledge Discovery Second Edition

Author: Harvey J. Miller
Publisher: CRC Press
ISBN: 9781420073980
Format: PDF, ePub, Docs
Download Now
The Definitive Volume on Cutting-Edge Exploratory Analysis of Massive Spatial and Spatiotemporal Databases Since the publication of the first edition of Geographic Data Mining and Knowledge Discovery, new techniques for geographic data warehousing (GDW), spatial data mining, and geovisualization (GVis) have been developed. In addition, there has been a rise in the use of knowledge discovery techniques due to the increasing collection and storage of data on spatiotemporal processes and mobile objects. Incorporating these novel developments, this second edition reflects the current state of the art in the field. New to the Second Edition Updated material on geographic knowledge discovery (GKD), GDW research, map cubes, spatial dependency, spatial clustering methods, clustering techniques for trajectory data, the INGENS 2.0 software, and GVis techniques New chapter on data quality issues in GKD New chapter that presents a tree-based partition querying methodology for medoid computation in large spatial databases New chapter that discusses the use of geographically weighted regression as an exploratory technique New chapter that gives an integrated approach to multivariate analysis and geovisualization Five new chapters on knowledge discovery from spatiotemporal and mobile objects databases Geographic data mining and knowledge discovery is a promising young discipline with many challenging research problems. This book shows that this area represents an important direction in the development of a new generation of spatial analysis tools for data-rich environments. Exploring various problems and possible solutions, it will motivate researchers to develop new methods and applications in this emerging field.

Visual and Spatial Analysis

Author: Boris Kovalerchuk
Publisher: Springer Science & Business Media
ISBN: 1402029586
Format: PDF, Mobi
Download Now
Advanced visual analysis and problem solving has been conducted successfully for millennia. The Pythagorean Theorem was proven using visual means more than 2000 years ago. In the 19th century, John Snow stopped a cholera epidemic in London by proposing that a specific water pump be shut down. He discovered that pump by visually correlating data on a city map. The goal of this book is to present the current trends in visual and spatial analysis for data mining, reasoning, problem solving and decision-making. This is the first book to focus on visual decision making and problem solving in general with specific applications in the geospatial domain - combining theory with real-world practice. The book is unique in its integration of modern symbolic and visual approaches to decision making and problem solving. As such, it ties together much of the monograph and textbook literature in these emerging areas. This book contains 21 chapters that have been grouped into five parts: (1) visual problem solving and decision making, (2) visual and heterogeneous reasoning, (3) visual correlation, (4) visual and spatial data mining, and (5) visual and spatial problem solving in geospatial domains. Each chapter ends with a summary and exercises. The book is intended for professionals and graduate students in computer science, applied mathematics, imaging science and Geospatial Information Systems (GIS). In addition to being a state-of-the-art research compilation, this book can be used a text for advanced courses on the subjects such as modeling, computer graphics, visualization, image processing, data mining, GIS, and algorithm analysis.

Automating the Analysis of Spatial Grids

Author: Valliappa Lakshmanan
Publisher: Springer Science & Business Media
ISBN: 9400740751
Format: PDF, Kindle
Download Now
The ability to create automated algorithms to process gridded spatial data is increasingly important as remotely sensed datasets increase in volume and frequency. Whether in business, social science, ecology, meteorology or urban planning, the ability to create automated applications to analyze and detect patterns in geospatial data is increasingly important. This book provides students with a foundation in topics of digital image processing and data mining as applied to geospatial datasets. The aim is for readers to be able to devise and implement automated techniques to extract information from spatial grids such as radar, satellite or high-resolution survey imagery.

Data Mining and Knowledge Discovery Handbook

Author: Oded Maimon
Publisher: Springer Science & Business Media
ISBN: 038725465X
Format: PDF
Download Now
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Handbook of Research on Computational Intelligence Applications in Bioinformatics

Author: Dash, Sujata
Publisher: IGI Global
ISBN: 1522504281
Format: PDF, Kindle
Download Now
Developments in the areas of biology and bioinformatics are continuously evolving and creating a plethora of data that needs to be analyzed and decrypted. Since it can be difficult to decipher the multitudes of data within these areas, new computational techniques and tools are being employed to assist researchers in their findings. The Handbook of Research on Computational Intelligence Applications in Bioinformatics examines emergent research in handling real-world problems through the application of various computation technologies and techniques. Featuring theoretical concepts and best practices in the areas of computational intelligence, artificial intelligence, big data, and bio-inspired computing, this publication is a critical reference source for graduate students, professionals, academics, and researchers.

Data Mining

Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319141422
Format: PDF, ePub, Mobi
Download Now
This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

Spatial Database Systems

Author: Albert K.W. Yeung
Publisher: Springer Science & Business Media
ISBN: 9781402053924
Format: PDF, Kindle
Download Now
This book places spatial data within the broader domain of information technology (IT) while providing a comprehensive and coherent explanation of the guiding principles, methods, implementation and operational management of spatial databases within the workplace. The text explains the key concepts, issues and processes of spatial data implementation and provides a holistic management perspective.