Speech and Language Processing

Author: Dan Jurafsky
Publisher: Prentice Hall
ISBN: 0131873210
Format: PDF, ePub
Download Now
An explosion of Web-based language techniques, merging of distinct fields, availability of phone-based dialogue systems, and much more make this an exciting time in speech and language processing. The first of its kind to thoroughly cover language technology – at all levels and with all modern technologies – this book takes an empirical approach to the subject, based on applying statistical and other machine-learning algorithms to large corporations. Builds each chapter around one or more worked examples demonstrating the main idea of the chapter, usingthe examples to illustrate the relative strengths and weaknesses of various approaches. Adds coverage of statistical sequence labeling, information extraction, question answering and summarization, advanced topics in speech recognition, speech synthesis. Revises coverage of language modeling, formal grammars, statistical parsing, machine translation, and dialog processing. A useful reference for professionals in any of the areas of speech and language processing.

Speech and Language Processing

Author: Daniel Jurafsky
Publisher: Pearson
ISBN: 0133252930
Format: PDF, ePub, Docs
Download Now
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For undergraduate or advanced undergraduate courses in Classical Natural Language Processing, Statistical Natural Language Processing, Speech Recognition, Computational Linguistics, and Human Language Processing. An explosion of Web-based language techniques, merging of distinct fields, availability of phone-based dialogue systems, and much more make this an exciting time in speech and language processing. The first of its kind to thoroughly cover language technology – at all levels and with all modern technologies – this text takes an empirical approach to the subject, based on applying statistical and other machine-learning algorithms to large corporations. The authors cover areas that traditionally are taught in different courses, to describe a unified vision of speech and language processing. Emphasis is on practical applications and scientific evaluation. An accompanying Website contains teaching materials for instructors, with pointers to language processing resources on the Web. The Second Edition offers a significant amount of new and extended material. Supplements: Click on the "Resources" tab to View Downloadable Files: Solutions Power Point Lecture Slides - Chapters 1-5, 8-10, 12-13 and 24 Now Available! For additional resourcse visit the author website: http://www.cs.colorado.edu/~martin/slp.html

Foundations of Statistical Natural Language Processing

Author: Christopher D. Manning
Publisher: MIT Press
ISBN: 9780262133609
Format: PDF, ePub
Download Now
An introduction to statistical natural language processing (NLP). The text contains the theory and algorithms needed for building NLP tools. Topics covered include: mathematical and linguistic foundations; statistical methods; collocation finding; word sense disambiguation; and probalistic parsing.

Bayesian Speech and Language Processing

Author: Shinji Watanabe
Publisher: Cambridge University Press
ISBN: 1107055571
Format: PDF, Docs
Download Now
A practical and comprehensive guide on how to apply Bayesian machine learning techniques to solve speech and language processing problems.

Introducing Speech and Language Processing

Author: John Coleman
Publisher: Cambridge University Press
ISBN: 9780521530699
Format: PDF, ePub, Mobi
Download Now
Provides a clearly-written, concise and accessible introduction to speech and language processing, with accompanying software.

Statistical Methods for Speech Recognition

Author: Frederick Jelinek
Publisher: MIT Press
ISBN: 9780262100663
Format: PDF, Kindle
Download Now
This book reflects decades of important research on the mathematical foundations of speech recognition. It focuses on underlying statistical techniques such as hidden Markov models, decision trees, the expectation-maximization algorithm, information theoretic goodness criteria, maximum entropy probability estimation, parameter and data clustering, and smoothing of probability distributions. The author's goal is to present these principles clearly in the simplest setting, to show the advantages of self-organization from real data, and to enable the reader to apply the techniques.

Spoken Language Processing

Author: Xuedong Huang
Publisher: Prentice Hall
ISBN: 9780130226167
Format: PDF, Docs
Download Now
Preface Our primary motivation in writing this book is to share our working experience to bridge the gap between the knowledge of industry gurus and newcomers to the spoken language processing community. Many powerful techniques hide in conference proceedings and academic papers for years before becoming widely recognized by the research community or the industry. We spent many years pursuing spoken language technology research at Carnegie Mellon University before we started spoken language R&D at Microsoft. We fully understand that it is by no means a small undertaking to transfer a state-of-the-art spoken language research system into a commercially viable product that can truly help people improve their productivity. Our experience in both industry and academia is reflected in the context of this book, which presents a contemporary and comprehensive description of both theoretic and practical issues in spoken language processing. This book is intended for people of diverse academic and practical backgrounds. Speech scientists, computer scientists, linguists, engineers, physicists, and psychologists all have a unique perspective on spoken language processing. This book will be useful to all of these special interest groups. Spoken language processing is a diverse subject that relies on knowledge of many levels, including acoustics, phonology, phonetics, linguistics, semantics, pragmatics, and discourse. The diverse nature of spoken language processing requires knowledge in computer science, electrical engineering, mathematics, syntax, and psychology. There are a number of excellent books on the subfields of spoken language processing, including speech recognition, text-to-speech conversion, and spoken language understanding, but there is no single book that covers both theoretical and practical aspects of these subfields and spoken language interface design. We devote many chapters systematically introducing fundamental theories needed to understand how speech recognition, text-to-speech synthesis, and spoken language understanding work. Even more important is the fact that the book highlights what works well in practice, which is invaluable if you want to build a practical speech recognizer, a practical text-to-speech synthesizer, or a practical spoken language system. Using numerous real examples in developing Microsoft's spoken language systems, we concentrate on showing how the fundamental theories can be applied to solve real problems in spoken language processing.

Natural Language Processing with Python

Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Format: PDF, Docs
Download Now
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Linguistic Fundamentals for Natural Language Processing

Author: Emily M. Bender
Publisher: Morgan & Claypool Publishers
ISBN: 1627050124
Format: PDF, ePub, Mobi
Download Now
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to whom—from natural language sentences. This task can be understood as the inverse of the problem solved in different ways by diverse human languages, namely, how to indicate the relationship between different parts of a sentence. Understanding how languages solve the problem can be extremely useful in both feature design and error analysis in the application of machine learning to NLP. Likewise, understanding cross-linguistic variation can be important for the design of MT systems and other multilingual applications. The purpose of this book is to present in a succinct and accessible fashion information about the morphological and syntactic structure of human languages that can be useful in creating more linguistically sophisticated, more language-independent, and thus more successful NLP systems. Table of Contents: Acknowledgments / Introduction/motivation / Morphology: Introduction / Morphophonology / Morphosyntax / Syntax: Introduction / Parts of speech / Heads, arguments, and adjuncts / Argument types and grammatical functions / Mismatches between syntactic position and semantic roles / Resources / Bibliography / Author's Biography / General Index / Index of Languages