Spherical Harmonics and Approximations on the Unit Sphere An Introduction

Author: Kendall Atkinson
Publisher: Springer Science & Business Media
ISBN: 3642259839
Format: PDF, ePub, Docs
Download Now
These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended for graduate students in the mathematical sciences and researchers who are interested in solving problems involving partial differential and integral equations on the unit sphere, especially on the unit sphere in three-dimensional Euclidean space. Some related work for approximation on the unit disk in the plane is also briefly discussed, with results being generalizable to the unit ball in more dimensions.

Approximation Theory and Harmonic Analysis on Spheres and Balls

Author: Feng Dai
Publisher: Springer Science & Business Media
ISBN: 1461466601
Format: PDF, ePub, Docs
Download Now
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.

Approximation Theory XIV San Antonio 2013

Author: Gregory E. Fasshauer
Publisher: Springer
ISBN: 3319064045
Format: PDF, ePub, Mobi
Download Now
These proceedings were prepared in connection with the 14th International Conference on Approximation Theory, which was held April 7-10, 2013 in San Antonio, Texas. The conference was the fourteenth in a series of meetings in Approximation Theory held at various locations in the United States. The included invited and contributed papers cover diverse areas of approximation theory with a special emphasis on the most current and active areas such as compressed sensing, isogeometric analysis, anisotropic spaces, radial basis functions and splines. Classical and abstract approximation is also included. The book will be of interest to mathematicians, engineers\ and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis and related application areas.

Spherical Radial Basis Functions Theory and Applications

Author: Simon Hubbert
Publisher: Springer
ISBN: 331917939X
Format: PDF, ePub
Download Now
This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solving a parabolic time-dependent PDE, complete with error analysis. The theory developed is illuminated with numerical experiments throughout. Spherical Radial Basis Functions, Theory and Applications will be of interest to graduate students and researchers in mathematics and related fields such as the geophysical sciences and statistics.

Geometric Applications of Fourier Series and Spherical Harmonics

Author: H. Groemer
Publisher: Cambridge University Press
ISBN: 9780521473187
Format: PDF, Mobi
Download Now
This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics.

Spherical Harmonics in p Dimensions

Author: Costas Efthimiou
Publisher: World Scientific
ISBN: 981459671X
Format: PDF, Docs
Download Now
The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter. Contents:Introduction and MotivationWorking in p DimensionsOrthogonal PolynomialsSpherical Harmonics in p DimensionsSolutions to Problems Readership: Undergraduate and graduate students in mathematical physics and differential equations. Key Features:Accessible to everyone (including undergraduate students who have some knowledge in mathematics)Presents a topic that, although well-studied, is not widely disseminated in booksSolutions to all end-of-chapter problems with all the necessary details are given in the final chapter of the bookKeywords:Spherical Harmonics;Special Functions;Mathematical Physics;Green's Functions;Legendre Polynomials

The Ricci Flow in Riemannian Geometry

Author: Ben Andrews
Publisher: Springer Science & Business Media
ISBN: 3642162851
Format: PDF, Mobi
Download Now
Focusing on Hamilton's Ricci flow, this volume begins with a detailed discussion of the required aspects of differential geometry. The discussion also includes existence and regularity theory, compactness theorems for Riemannian manifolds, and much more.