Statistical Analysis of Network Data with R

Author: Eric D. Kolaczyk
Publisher: Springer
ISBN: 1493909835
Format: PDF, ePub, Docs
Download Now
Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

Statistical Analysis of Network Data

Author: Eric D. Kolaczyk
Publisher: Springer Science & Business Media
ISBN: 0387881468
Format: PDF, Docs
Download Now
In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.

Probabilistic Foundations of Statistical Network Analysis

Author: Harry Crane
Publisher: CRC Press
ISBN: 1351807331
Format: PDF, Mobi
Download Now
Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE. ? ? ? ? ? ?

A User s Guide to Network Analysis in R

Author: Douglas Luke
Publisher: Springer
ISBN: 3319238833
Format: PDF, Docs
Download Now
Presenting a comprehensive resource for the mastery of network analysis in R, the goal of Network Analysis with R is to introduce modern network analysis techniques in R to social, physical, and health scientists. The mathematical foundations of network analysis are emphasized in an accessible way and readers are guided through the basic steps of network studies: network conceptualization, data collection and management, network description, visualization, and building and testing statistical models of networks. As with all of the books in the Use R! series, each chapter contains extensive R code and detailed visualizations of datasets. Appendices will describe the R network packages and the datasets used in the book. An R package developed specifically for the book, available to readers on GitHub, contains relevant code and real-world network datasets as well.

Graphical Models with R

Author: Søren Højsgaard
Publisher: Springer Science & Business Media
ISBN: 146142299X
Format: PDF, ePub
Download Now
Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many of these software developments have taken place within the R community, either in the form of new packages or by providing an R interface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data.

Using R for Data Management Statistical Analysis and Graphics

Author: Nicholas J. Horton
Publisher: CRC Press
ISBN: 9781439827567
Format: PDF, ePub
Download Now
Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphics Using R for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation and vast number of add-on packages. Organized by short, clear descriptive entries, the book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, multivariate methods, and the creation of graphics. Through the extensive indexing, cross-referencing, and worked examples in this text, users can directly find and implement the material they need. The text includes convenient indices organized by topic and R syntax. Demonstrating the R code in action and facilitating exploration, the authors present example analyses that employ a single data set from the HELP study. They also provide several case studies of more complex applications. Data sets and code are available for download on the book’s website. Helping to improve your analytical skills, this book lucidly summarizes the aspects of R most often used by statistical analysts. New users of R will find the simple approach easy to understand while more sophisticated users will appreciate the invaluable source of task-oriented information.

SAS and R

Author: Ken Kleinman
Publisher: CRC Press
ISBN: 1466584491
Format: PDF, ePub, Docs
Download Now
An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.

Humanities Data in R

Author: Taylor Arnold
Publisher: Springer
ISBN: 3319207024
Format: PDF
Download Now
​This pioneering book teaches readers to use R within four core analytical areas applicable to the Humanities: networks, text, geospatial data, and images. This book is also designed to be a bridge: between quantitative and qualitative methods, individual and collaborative work, and the humanities and social sciences. Humanities Data with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis (continuous and categorical data, multivariate analysis, and advanced graphics with emphasis on aesthetics and facility). Following this, networks, geospatial data, image data, natural language processing and text analysis each have a dedicated chapter. Each chapter is grounded in examples to move readers beyond the intimidation of adding new tools to their research. Everything is hands-on: networks are explained using U.S. Supreme Court opinions, and low-level NLP methods are applied to short stories by Sir Arthur Conan Doyle. After working through these examples with the provided data, code and book website, readers are prepared to apply new methods to their own work. The open source R programming language, with its myriad packages and popularity within the sciences and social sciences, is particularly well-suited to working with humanities data. R packages are also highlighted in an appendix. This book uses an expanded conception of the forms data may take and the information it represents. The methodology will have wide application in classrooms and self-study for the humanities, but also for use in linguistics, anthropology, and political science. Outside the classroom, this intersection of humanities and computing is particularly relevant for research and new modes of dissemination across archives, museums and libraries. ​

Network Security Through Data Analysis

Author: Michael S Collins
Publisher: "O'Reilly Media, Inc."
ISBN: 1449357865
Format: PDF, ePub
Download Now
Traditional intrusion detection and logfile analysis are no longer enough to protect today’s complex networks. In this practical guide, security researcher Michael Collins shows you several techniques and tools for collecting and analyzing network traffic datasets. You’ll understand how your network is used, and what actions are necessary to protect and improve it. Divided into three sections, this book examines the process of collecting and organizing data, various tools for analysis, and several different analytic scenarios and techniques. It’s ideal for network administrators and operational security analysts familiar with scripting. Explore network, host, and service sensors for capturing security data Store data traffic with relational databases, graph databases, Redis, and Hadoop Use SiLK, the R language, and other tools for analysis and visualization Detect unusual phenomena through Exploratory Data Analysis (EDA) Identify significant structures in networks with graph analysis Determine the traffic that’s crossing service ports in a network Examine traffic volume and behavior to spot DDoS and database raids Get a step-by-step process for network mapping and inventory

Practical Graph Mining with R

Author: Nagiza F. Samatova
Publisher: CRC Press
ISBN: 1439860858
Format: PDF
Download Now
Discover Novel and Insightful Knowledge from Data Represented as a Graph Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. Develops Intuition through Easy-to-Follow Examples and Rigorous Mathematical Foundations Every algorithm and example is accompanied with R code. This allows readers to see how the algorithmic techniques correspond to the process of graph data analysis and to use the graph mining techniques in practice. The text also gives a rigorous, formal explanation of the underlying mathematics of each technique. Makes Graph Mining Accessible to Various Levels of Expertise Assuming no prior knowledge of mathematics or data mining, this self-contained book is accessible to students, researchers, and practitioners of graph data mining. It is suitable as a primary textbook for graph mining or as a supplement to a standard data mining course. It can also be used as a reference for researchers in computer, information, and computational science as well as a handy guide for data analytics practitioners.