Statistical Methods for Trend Detection and Analysis in the Environmental Sciences

Author: Richard Chandler
Publisher: John Wiley & Sons
ISBN: 111999196X
Format: PDF
Download Now
The need to understand and quantify change is fundamental throughout the environmental sciences. This might involve describing past variation, understanding the mechanisms underlying observed changes, making projections of possible future change, or monitoring the effect of intervening in some environmental system. This book provides an overview of modern statistical techniques that may be relevant in problems of this nature. Practitioners studying environmental change will be familiar with many classical statistical procedures for the detection and estimation of trends. However, the ever increasing capacity to collect and process vast amounts of environmental information has led to growing awareness that such procedures are limited in the insights that they can deliver. At the same time, significant developments in statistical methodology have often been widely dispersed in the statistical literature and have therefore received limited exposure in the environmental science community. This book aims to provide a thorough but accessible review of these developments. It is split into two parts: the first provides an introduction to this area and the second part presents a collection of case studies illustrating the practical application of modern statistical approaches to the analysis of trends in real studies. Key Features: Presents a thorough introduction to the practical application and methodology of trend analysis in environmental science. Explores non-parametric estimation and testing as well as parametric techniques. Methods are illustrated using case studies from a variety of environmental application areas. Looks at trends in all aspects of a process including mean, percentiles and extremes. Supported by an accompanying website featuring datasets and R code. The book is designed to be accessible to readers with some basic statistical training, but also contains sufficient detail to serve as a reference for practising statisticians. It will therefore be of use to postgraduate students and researchers both in the environmental sciences and in statistics.

Statistical Data Analysis Explained

Author: Clemens Reimann
Publisher: John Wiley & Sons
ISBN: 1119965284
Format: PDF, Docs
Download Now
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.

Statistical Methods for Environmental Pollution Monitoring

Author: Richard O. Gilbert
Publisher: John Wiley & Sons
ISBN: 9780471288787
Format: PDF, ePub
Download Now
This book discusses a broad range of statistical design and analysis methods that are particularly well suited to pollution data. It explains key statistical techniques in easy-to-comprehend terms and uses practical examples, exercises, and case studies to illustrate procedures. Dr. Gilbert begins by discussing a space-time framework for sampling pollutants. He then shows how to use statistical sample survey methods to estimate average and total amounts of pollutants in the environment, and how to determine the number of field samples and measurements to collect for this purpose. Then a broad range of statistical analysis methods are described and illustrated. These include: * determining the number of samples needed to find hot spots * analyzing pollution data that are lognormally distributed * testing for trends over time or space * estimating the magnitude of trends * comparing pollution data from two or more populations New areas discussed in this sourcebook include statistical techniques for data that are correlated, reported as less than the measurement detection limit, or obtained from field-composited samples. Nonparametric statistical analysis methods are emphasized since parametric procedures are often not appropriate for pollution data. This book also provides an illustrated comprehensive computer code for nonparametric trend detection and estimation analyses as well as nineteen statistical tables to permit easy application of the discussed statistical techniques. In addition, many publications are cited that deal with the design of pollution studies and the statistical analysis of pollution data. This sourcebook will be a useful tool for applied statisticians, ecologists, radioecologists, hydrologists, biologists, environmental engineers, and other professionals who deal with the collection, analysis, and interpretation of pollution in air, water, and soil.

Geostatistics for Environmental Scientists

Author: Richard Webster
Publisher: John Wiley & Sons
ISBN: 9780470517260
Format: PDF, Docs
Download Now
Geostatistics is essential for environmental scientists. Weather and climate vary from place to place, soil varies at every scale at which it is examined, and even man-made attributes – such as the distribution of pollution – vary. The techniques used in geostatistics are ideally suited to the needs of environmental scientists, who use them to make the best of sparse data for prediction, and top plan future surveys when resources are limited. Geostatistical technology has advanced much in the last few years and many of these developments are being incorporated into the practitioner’s repertoire. This second edition describes these techniques for environmental scientists. Topics such as stochastic simulation, sampling, data screening, spatial covariances, the variogram and its modeling, and spatial prediction by kriging are described in rich detail. At each stage the underlying theory is fully explained, and the rationale behind the choices given, allowing the reader to appreciate the assumptions and constraints involved.

Environmental Statistics

Author: Vic Barnett
Publisher: John Wiley & Sons
ISBN: 0470026979
Format: PDF, ePub
Download Now
In modern society, we are ever more aware of the environmental issues we face, whether these relate to global warming, depletion of rivers and oceans, despoliation of forests, pollution of land, poor air quality, environmental health issues, etc. At the most fundamental level it is necessary to monitor what is happening in the environment – collecting data to describe the changing scene. More importantly, it is crucial to formally describe the environment with sound and validated models, and to analyse and interpret the data we obtain in order to take action. Environmental Statistics provides a broad overview of the statistical methodology used in the study of the environment, written in an accessible style by a leading authority on the subject. It serves as both a textbook for students of environmental statistics, as well as a comprehensive source of reference for anyone working in statistical investigation of environmental issues. Provides broad coverage of the methodology used in the statistical investigation of environmental issues. Covers a wide range of key topics, including sampling, methods for extreme data, outliers and robustness, relationship models and methods, time series, spatial analysis, and environmental standards. Includes many detailed practical and worked examples that illustrate the applications of statistical methods in environmental issues. Authored by a leading authority on environmental statistics.

Statistics for Censored Environmental Data Using Minitab and R

Author: Dennis R. Helsel
Publisher: John Wiley & Sons
ISBN: 1118162765
Format: PDF, Kindle
Download Now
Praise for the First Edition " . . . an excellent addition to an upper-level undergraduate course on environmental statistics, and . . . a 'must-have' desk reference for environmental practitioners dealing with censored datasets." —Vadose Zone Journal Statistical Methods for Censored Environmental Data Using Minitab® and R, Second Edition introduces and explains methods for analyzing and interpreting censored data in the environmental sciences. Adapting survival analysis techniques from other fields, the book translates well-established methods from other disciplines into new solutions for environmental studies. This new edition applies methods of survival analysis, including methods for interval-censored data to the interpretation of low-level contaminants in environmental sciences and occupational health. Now incorporating the freely available R software as well as Minitab® into the discussed analyses, the book features newly developed and updated material including: A new chapter on multivariate methods for censored data Use of interval-censored methods for treating true nondetects as lower than and separate from values between the detection and quantitation limits ("remarked data") A section on summing data with nondetects A newly written introduction that discusses invasive data, showing why substitution methods fail Expanded coverage of graphical methods for censored data The author writes in a style that focuses on applications rather than derivations, with chapters organized by key objectives such as computing intervals, comparing groups, and correlation. Examples accompany each procedure, utilizing real-world data that can be analyzed using the Minitab® and R software macros available on the book's related website, and extensive references direct readers to authoritative literature from the environmental sciences. Statistics for Censored Environmental Data Using Minitab® and R, Second Edition is an excellent book for courses on environmental statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for¿environmental professionals, biologists, and ecologists who focus on the water sciences, air quality, and soil science.

Climate Time Series Analysis

Author: Manfred Mudelsee
Publisher: Springer Science & Business Media
ISBN: 9789048194827
Format: PDF
Download Now
Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.

Applied Mixed Models in Medicine

Author: Helen Brown
Publisher: John Wiley & Sons
ISBN: 1118778243
Format: PDF, Kindle
Download Now
A fully updated edition of this key text on mixed models, focusing on applications in medical research The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. A mixed model allows the incorporation of both fixed and random variables within a statistical analysis, enabling efficient inferences and more information to be gained from the data. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This third edition of Brown and Prescott’s groundbreaking text provides an update on the latest developments, and includes guidance on the use of current SAS techniques across a wide range of applications. Presents an overview of the theory and applications of mixed models in medical research, including the latest developments and new sections on incomplete block designs and the analysis of bilateral data. Easily accessible to practitioners in any area where mixed models are used, including medical statisticians and economists. Includes numerous examples using real data from medical and health research, and epidemiology, illustrated with SAS code and output. Features the new version of SAS, including new graphics for model diagnostics and the procedure PROC MCMC. Supported by a website featuring computer code, data sets, and further material. This third edition will appeal to applied statisticians working in medical research and the pharmaceutical industry, as well as teachers and students of statistics courses in mixed models. The book will also be of great value to a broad range of scientists, particularly those working in the medical and pharmaceutical areas.

Statistical Methods for Psychology

Author: David Howell
Publisher: Cengage Learning
ISBN: 1111835489
Format: PDF
Download Now
STATISTICAL METHODS FOR PSYCHOLOGY surveys the statistical techniques commonly used in the behavioral and social sciences, particularly psychology and education. To help students gain a better understanding of the specific statistical hypothesis tests that are covered throughout the text, author David Howell emphasizes conceptual understanding. This Eighth Edition continues to focus students on two key themes that are the cornerstones of this book’s success: the importance of looking at the data before beginning a hypothesis test, and the importance of knowing the relationship between the statistical test in use and the theoretical questions being asked by the experiment. New and expanded topics--reflecting the evolving realm of statistical methods--include effect size, meta-analysis, and treatment of missing data. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Experimental Design and Data Analysis for Biologists

Author: Gerry P. Quinn
Publisher: Cambridge University Press
ISBN: 1139432893
Format: PDF, Docs
Download Now
An essential textbook for any student or researcher in biology needing to design experiments, sample programs or analyse the resulting data. The text begins with a revision of estimation and hypothesis testing methods, covering both classical and Bayesian philosophies, before advancing to the analysis of linear and generalized linear models. Topics covered include linear and logistic regression, simple and complex ANOVA models (for factorial, nested, block, split-plot and repeated measures and covariance designs), and log-linear models. Multivariate techniques, including classification and ordination, are then introduced. Special emphasis is placed on checking assumptions, exploratory data analysis and presentation of results. The main analyses are illustrated with many examples from published papers and there is an extensive reference list to both the statistical and biological literature. The book is supported by a website that provides all data sets, questions for each chapter and links to software.