Statistical Methods for Trend Detection and Analysis in the Environmental Sciences

Author: Richard Chandler
Publisher: John Wiley & Sons
ISBN: 111999196X
Format: PDF, ePub, Docs
Download Now
The need to understand and quantify change is fundamental throughout the environmental sciences. This might involve describing past variation, understanding the mechanisms underlying observed changes, making projections of possible future change, or monitoring the effect of intervening in some environmental system. This book provides an overview of modern statistical techniques that may be relevant in problems of this nature. Practitioners studying environmental change will be familiar with many classical statistical procedures for the detection and estimation of trends. However, the ever increasing capacity to collect and process vast amounts of environmental information has led to growing awareness that such procedures are limited in the insights that they can deliver. At the same time, significant developments in statistical methodology have often been widely dispersed in the statistical literature and have therefore received limited exposure in the environmental science community. This book aims to provide a thorough but accessible review of these developments. It is split into two parts: the first provides an introduction to this area and the second part presents a collection of case studies illustrating the practical application of modern statistical approaches to the analysis of trends in real studies. Key Features: Presents a thorough introduction to the practical application and methodology of trend analysis in environmental science. Explores non-parametric estimation and testing as well as parametric techniques. Methods are illustrated using case studies from a variety of environmental application areas. Looks at trends in all aspects of a process including mean, percentiles and extremes. Supported by an accompanying website featuring datasets and R code. The book is designed to be accessible to readers with some basic statistical training, but also contains sufficient detail to serve as a reference for practising statisticians. It will therefore be of use to postgraduate students and researchers both in the environmental sciences and in statistics.

Applied Mixed Models in Medicine

Author: Helen Brown
Publisher: John Wiley & Sons
ISBN: 1118778243
Format: PDF, ePub
Download Now
A fully updated edition of this key text on mixed models, focusing on applications in medical research The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. A mixed model allows the incorporation of both fixed and random variables within a statistical analysis, enabling efficient inferences and more information to be gained from the data. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This third edition of Brown and Prescott’s groundbreaking text provides an update on the latest developments, and includes guidance on the use of current SAS techniques across a wide range of applications. Presents an overview of the theory and applications of mixed models in medical research, including the latest developments and new sections on incomplete block designs and the analysis of bilateral data. Easily accessible to practitioners in any area where mixed models are used, including medical statisticians and economists. Includes numerous examples using real data from medical and health research, and epidemiology, illustrated with SAS code and output. Features the new version of SAS, including new graphics for model diagnostics and the procedure PROC MCMC. Supported by a website featuring computer code, data sets, and further material. This third edition will appeal to applied statisticians working in medical research and the pharmaceutical industry, as well as teachers and students of statistics courses in mixed models. The book will also be of great value to a broad range of scientists, particularly those working in the medical and pharmaceutical areas.

Statistical Methods for Groundwater Monitoring

Author: Robert D. Gibbons
Publisher: John Wiley & Sons
ISBN: 9780470549926
Format: PDF, Docs
Download Now
A new edition of the most comprehensive overview of statistical methods for environmental monitoring applications Thoroughly updated to provide current research findings, Statistical Methods for Groundwater Monitoring, Second Edition continues to provide a comprehensive overview and accessible treatment of the statistical methods that are useful in the analysis of environmental data. This new edition expands focus on statistical comparison to regulatory standards that are a vital part of assessment, compliance, and corrective action monitoring in the environmental sciences. The book explores quantitative concepts useful for surface water monitoring as well as soil and air monitoring applications while also maintaining a focus on the analysis of groundwater monitoring data in order to detect environmental impacts from a variety of sources, such as industrial activity and waste disposal. The authors introduce the statistical properties of alternative approaches, such as false positive and false negative rates, that are associated with each test and the factors related to these error rates. The Second Edition also features: An introduction to Intra-laboratory Calibration Curves and random-effects regression models for non-constant measurement variability Coverage of statistical prediction limits for a gamma-distributed random variable, with a focus on estimation and testing of parameters in environmental monitoring applications A unified treatment of censored data with the computation of statistical prediction, tolerance, and control limits Expanded coverage of statistical issues related to laboratory practice, such as detection and quantitation limits An updated chapter on regulatory issues that outlines common mistakes to avoid in groundwater monitoring applications as well as an introduction to the newest regulations for both hazardous and municipal solid waste facilities Each chapter provides a general overview of a problem, followed by statistical derivation of the solution and a relevant example complete with computational details that allow readers to perform routine application of the statistical results. Relevant issues are highlighted throughout, and recommendations are also provided for specific problems based on characteristics such as number of monitoring wells, number of constituents, distributional form of measurements, and detection frequency. Statistical Methods for Groundwater Monitoring, Second Edition is an excellent supplement to courses on environmental statistics at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners in the fields of biostatistics, engineering, and the environmental sciences who work with statistical methods in their everyday work.

Using Statistical Methods for Water Quality Management

Author: Graham B. McBride
Publisher: John Wiley & Sons
ISBN: 0471733202
Format: PDF, Mobi
Download Now
STATISTICS IN PRACTICE A practical exploration of alternative approaches to analyzing water-related environmental issues Written by an experienced environmentalist and recognized expert in the field, this text is designed to help water resource managers and scientists to formulate, implement, and interpret more effective methods of water quality management. After presenting the basic foundation for using statistical methods in water resource management, including the use of appropriate hypothesis test procedures and some rapid calculation procedures, the author offers a range of practical problems and solutions on environmental topics that often arise, but are not generally covered. These include: * Formulating water quality standards * Determining compliance with standards * MPNs and microbiology * Water-related, human health risk modeling * Trends, impacts, concordance, and detection limits In order to promote awareness of alternative approaches to analyzing data, both frequentist and Bayesian, statistical methods are contrasted in terms of their applicability to various environmental issues. Each chapter ends with a number of set problems for which full answers are provided. The book also encourages discussion between technical staff and management before embarking on statistical studies.

Statistical Methods for Hospital Monitoring with R

Author: Anthony Morton
Publisher: John Wiley & Sons
ISBN: 1118639170
Format: PDF, ePub
Download Now
Hospitals monitoring is becoming more complex and is increasing both because staff want their data analysed and because of increasing mandated surveillance. This book provides a suite of functions in R, enabling scientists and data analysts working in infection management and quality improvement departments in hospitals, to analyse their often non-independent data which is frequently in the form of trended, over-dispersed and sometimes auto-correlated time series; this is often difficult to analyse using standard office software. This book provides much-needed guidance on data analysis using R for the growing number of scientists in hospital departments who are responsible for producing reports, and who may have limited statistical expertise. This book explores data analysis using R and is aimed at scientists in hospital departments who are responsible for producing reports, and who are involved in improving safety. Professionals working in the healthcare quality and safety community will also find this book of interest Statistical Methods for Hospital Monitoring with R: Provides functions to perform quality improvement and infection management data analysis. Explores the characteristics of complex systems, such as self-organisation and emergent behaviour, along with their implications for such activities as root-cause analysis and the Pareto principle that seek few key causes of adverse events. Provides a summary of key non-statistical aspects of hospital safety and easy to use functions. Provides R scripts in an accompanying web site enabling analyses to be performed by the reader http://www.wiley.com/go/hospital_monitoring Covers issues that will be of increasing importance in the future, such as, generalised additive models, and complex systems, networks and power laws.

Introduction to Probability and Statistics for Ecosystem Managers

Author: Timothy C. Haas
Publisher: John Wiley & Sons
ISBN: 1118636236
Format: PDF, Kindle
Download Now
Explores computer-intensive probability and statistics for ecosystem management decision making Simulation is an accessible way to explain probability and stochastic model behavior to beginners. This book introduces probability and statistics to future and practicing ecosystem managers by providing a comprehensive treatment of these two areas. The author presents a self-contained introduction for individuals involved in monitoring, assessing, and managing ecosystems and features intuitive, simulation-based explanations of probabilistic and statistical concepts. Mathematical programming details are provided for estimating ecosystem model parameters with Minimum Distance, a robust and computer-intensive method. The majority of examples illustrate how probability and statistics can be applied to ecosystem management challenges. There are over 50 exercises – making this book suitable for a lecture course in a natural resource and/or wildlife management department, or as the main text in a program of self-study. Key features: Reviews different approaches to wildlife and ecosystem management and inference. Uses simulation as an accessible way to explain probability and stochastic model behavior to beginners. Covers material from basic probability through to hierarchical Bayesian models and spatial/ spatio-temporal statistical inference. Provides detailed instructions for using R, along with complete R programs to recreate the output of the many examples presented. Provides an introduction to Geographic Information Systems (GIS) along with examples from Quantum GIS, a free GIS software package. A companion website featuring all R code and data used throughout the book. Solutions to all exercises are presented along with an online intelligent tutoring system that supports readers who are using the book for self-study.

Modern Industrial Statistics

Author: Ron S. Kenett
Publisher: John Wiley & Sons
ISBN: 1118763696
Format: PDF, ePub, Mobi
Download Now
Fully revised and updated, this book combines a theoretical background with examples and references to R, MINITAB and JMP, enabling practitioners to find state-of-the-art material on both foundation and implementation tools to support their work. Topics addressed include computer-intensive data analysis, acceptance sampling, univariate and multivariate statistical process control, design of experiments, quality by design, and reliability using classical and Bayesian methods. The book can be used for workshops or courses on acceptance sampling, statistical process control, design of experiments, and reliability. Graduate and post-graduate students in the areas of statistical quality and engineering, as well as industrial statisticians, researchers and practitioners in these fields will all benefit from the comprehensive combination of theoretical and practical information provided in this single volume. Modern Industrial Statistics: With applications in R, MINITAB and JMP: Combines a practical approach with theoretical foundations and computational support. Provides examples in R using a dedicated package called MISTAT, and also refers to MINITAB and JMP. Includes exercises at the end of each chapter to aid learning and test knowledge. Provides over 40 data sets representing real-life case studies. Is complemented by a comprehensive website providing an introduction to R, and installations of JMP scripts and MINITAB macros, including effective tutorials with introductory material: www.wiley.com/go/modern_industrial_statistics.

Statistical Applications for Environmental Analysis and Risk Assessment

Author: Joseph Ofungwu
Publisher: John Wiley & Sons
ISBN: 1118634519
Format: PDF
Download Now
Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and “ready-made” software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: • Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject • Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners • Software scripts using the high-powered statistical software system, R, and supplemented by USEPA’s ProUCL and USDOE’s VSP software packages, which are all freely available • Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples • Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.

Statistical Methods for Environmental Pollution Monitoring

Author: Richard O. Gilbert
Publisher: John Wiley & Sons
ISBN: 9780471288787
Format: PDF, Mobi
Download Now
This book discusses a broad range of statistical design and analysis methods that are particularly well suited to pollution data. It explains key statistical techniques in easy-to-comprehend terms and uses practical examples, exercises, and case studies to illustrate procedures. Dr. Gilbert begins by discussing a space-time framework for sampling pollutants. He then shows how to use statistical sample survey methods to estimate average and total amounts of pollutants in the environment, and how to determine the number of field samples and measurements to collect for this purpose. Then a broad range of statistical analysis methods are described and illustrated. These include: * determining the number of samples needed to find hot spots * analyzing pollution data that are lognormally distributed * testing for trends over time or space * estimating the magnitude of trends * comparing pollution data from two or more populations New areas discussed in this sourcebook include statistical techniques for data that are correlated, reported as less than the measurement detection limit, or obtained from field-composited samples. Nonparametric statistical analysis methods are emphasized since parametric procedures are often not appropriate for pollution data. This book also provides an illustrated comprehensive computer code for nonparametric trend detection and estimation analyses as well as nineteen statistical tables to permit easy application of the discussed statistical techniques. In addition, many publications are cited that deal with the design of pollution studies and the statistical analysis of pollution data. This sourcebook will be a useful tool for applied statisticians, ecologists, radioecologists, hydrologists, biologists, environmental engineers, and other professionals who deal with the collection, analysis, and interpretation of pollution in air, water, and soil.

Statistical Data Analysis Explained

Author: Clemens Reimann
Publisher: John Wiley & Sons
ISBN: 1119965284
Format: PDF, Mobi
Download Now
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.