Statistics and Data Analysis for Financial Engineering

Author: David Ruppert
Publisher: Springer
ISBN: 1493926144
Format: PDF, Docs
Download Now
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.

Statistical Analysis of Financial Data in R

Author: René Carmona
Publisher: Springer Science & Business Media
ISBN: 1461487889
Format: PDF, ePub
Download Now
Although there are many books on mathematical finance, few deal with the statistical aspects of modern data analysis as applied to financial problems. This textbook fills this gap by addressing some of the most challenging issues facing financial engineers. It shows how sophisticated mathematics and modern statistical techniques can be used in the solutions of concrete financial problems. Concerns of risk management are addressed by the study of extreme values, the fitting of distributions with heavy tails, the computation of values at risk (VaR), and other measures of risk. Principal component analysis (PCA), smoothing, and regression techniques are applied to the construction of yield and forward curves. Time series analysis is applied to the study of temperature options and nonparametric estimation. Nonlinear filtering is applied to Monte Carlo simulations, option pricing and earnings prediction. This textbook is intended for undergraduate students majoring in financial engineering, or graduate students in a Master in finance or MBA program. It is sprinkled with practical examples using market data, and each chapter ends with exercises. Practical examples are solved in the R computing environment. They illustrate problems occurring in the commodity, energy and weather markets, as well as the fixed income, equity and credit markets. The examples, experiments and problem sets are based on the library Rsafd developed for the purpose of the text. The book should help quantitative analysts learn and implement advanced statistical concepts. Also, it will be valuable for researchers wishing to gain experience with financial data, implement and test mathematical theories, and address practical issues that are often ignored or underestimated in academic curricula. This is the new, fully-revised edition to the book Statistical Analysis of Financial Data in S-Plus. René Carmona is the Paul M. Wythes '55 Professor of Engineering and Finance at Princeton University in the department of Operations Research and Financial Engineering, and Director of Graduate Studies of the Bendheim Center for Finance. His publications include over one hundred articles and eight books in probability and statistics. He was elected Fellow of the Institute of Mathematical Statistics in 1984, and of the Society for Industrial and Applied Mathematics in 2010. He is on the editorial board of several peer-reviewed journals and book series. Professor Carmona has developed computer programs for teaching statistics and research in signal analysis and financial engineering. He has worked for many years on energy, the commodity markets and more recently in environmental economics, and he is recognized as a leading researcher and expert in these areas.

Financial Analytics with R

Author: Mark J. Bennett
Publisher: Cambridge University Press
ISBN: 1316776751
Format: PDF, ePub
Download Now
Are you innately curious about dynamically inter-operating financial markets? Since the crisis of 2008, there is a need for professionals with more understanding about statistics and data analysis, who can discuss the various risk metrics, particularly those involving extreme events. By providing a resource for training students and professionals in basic and sophisticated analytics, this book meets that need. It offers both the intuition and basic vocabulary as a step towards the financial, statistical, and algorithmic knowledge required to resolve the industry problems, and it depicts a systematic way of developing analytical programs for finance in the statistical language R. Build a hands-on laboratory and run many simulations. Explore the analytical fringes of investments and risk management. Bennett and Hugen help profit-seeking investors and data science students sharpen their skills in many areas, including time-series, forecasting, portfolio selection, covariance clustering, prediction, and derivative securities.

Statistik Workshop f r Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Format: PDF, Docs
Download Now
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Financial Signal Processing and Machine Learning

Author: Ali N. Akansu
Publisher: John Wiley & Sons
ISBN: 1118745639
Format: PDF, Docs
Download Now
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 3709169445
Format: PDF
Download Now
Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Statistical Analysis of Financial Data in S Plus

Author: René Carmona
Publisher: Springer Science & Business Media
ISBN: 9780387202860
Format: PDF
Download Now
This book develops the use of statistical data analysis in finance, and it uses the statistical software environment of S-PLUS as a vehicle for presenting practical implementations from financial engineering. It is divided into three parts. Part I, Exploratory Data Analysis, reviews the most commonly used methods of statistical data exploration. Its originality lies in the introduction of tools for the estimation and simulation of heavy tail distributions and copulas, the computation of measures of risk, and the principal component analysis of yield curves. Part II, Regression, introduces modern regression concepts with an emphasis on robustness and non-parametric techniques. The applications include the term structure of interest rates, the construction of commodity forward curves, and nonparametric alternatives to the Black Scholes option pricing paradigm. Part III, Time Series and State Space Models, is concerned with theories of time series and of state space models. Linear ARIMA models are applied to the analysis of weather derivatives, Kalman filtering is applied to public company earnings prediction, and nonlinear GARCH models and nonlinear filtering are applied to stochastic volatility models. The book is aimed at undergraduate students in financial engineering, master students in finance and MBA's, and to practitioners with financial data analysis concerns.

Optionsbewertung und Portfolio Optimierung

Author: Ralf Korn
Publisher: Springer-Verlag
ISBN: 3322832104
Format: PDF
Download Now
Es werden die typischen Aufgabenstellungen der zeitstetigen Modellierung von Finanzmärkten wie Optionsbewertung (insbesondere auch die Black-Scholes-Formel und zugehörige Varianten) und Portfolio-Optimierung (Bestimmen optimaler Investmentstrategien) behandelt. Die benötigten mathematischen Werkzeuge (wie z. B. Brownsche Bewegung, Martingaltheorie, Ito-Kalkül, stochastische Steuerung) werden in selbständigen Exkursen bereitgestellt. Das Buch eignet sich als Grundlage einer Vorlesung, die sich an einen Grundkurs in Stochastik anschließt. Es richtet sich an Mathematiker, Finanz- und Wirtschaftsmathematiker in Studium und Beruf und ist aufgrund seiner modularen Struktur auch für Praktiker in den Bereichen Banken und Versicherungen geeignet.