Stochastic Differential Equations

Author: K. Sobczyk
Publisher: Springer Science & Business Media
ISBN: 9401137129
Format: PDF, ePub
Download Now
'Et moi, ..~ si lavait su CO.llUlJalt en revc:nir, One acMcc matbcmatica bu JaIdcred the human rac:c. It bu put COIDIDOD _ beet je n'y serais point aBe.' Jules Verne wbac it bdoup, 0Jl!be~ IbcII _t to!be dusty cauialcr Iabc & d 'diMardod__ The series is divergent; thc:reforc we may be -'. I!.ticT. Bc:I1 able to do something with it. O. Hcavisidc Mathematics is a tool for thought. A highly necessary tool in a world when: both feedback and non linearities abound. Similarly. all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statcmalts as: 'One service topology has rendered mathematical physics ...-; 'One service logic has rendered c0m puter science ... '; 'One service category theory has rendered mathematics ... '. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series. This series, Mathematics and Its Applications. started in 19n. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope. At the time I wrote "Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However. the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branc:hes. It also happens, quite often in fact, that branches which were thought to be completely.

Stochastic Differential Equations

Author: Bernt Oksendal
Publisher: Springer Science & Business Media
ISBN: 3662025744
Format: PDF, ePub, Docs
Download Now
From the reviews: "The author, a lucid mind with a fine pedagogical instinct, has written a splendid text. He starts out by stating six problems in the introduction in which stochastic differential equations play an essential role in the solution. Then, while developing stochastic calculus, he frequently returns to these problems and variants thereof and to many other problems to show how the theory works and to motivate the next step in the theoretical development. Needless to say, he restricts himself to stochastic integration with respect to Brownian motion. He is not hesitant to give some basic results without proof in order to leave room for "some more basic applications... The book can be an ideal text for a graduate course, but it is also recommended to analysts (in particular, those working in differential equations and deterministic dynamical systems and control) who wish to learn quickly what stochastic differential equations are all about." Acta Scientiarum Mathematicarum, Tom 50, 3-4, 1986#1 "The book is well written, gives a lot of nice applications of stochastic differential equation theory, and presents theory and applications of stochastic differential equations in a way which makes the book useful for mathematical seminars at a low level. (...) The book (will) really motivate scientists from non-mathematical fields to try to understand the usefulness of stochastic differential equations in their fields." Metrica#2

Numerical Solution of Stochastic Differential Equations

Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Format: PDF
Download Now
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

From Elementary Probability to Stochastic Differential Equations with MAPLE

Author: Sasha Cyganowski
Publisher: Springer Science & Business Media
ISBN: 3642561446
Format: PDF, Mobi
Download Now
This is an introduction to probabilistic and statistical concepts necessary to understand the basic ideas and methods of stochastic differential equations. Based on measure theory, which is introduced as smoothly as possible, it provides practical skills in the use of MAPLE in the context of probability and its applications. It offers to graduates and advanced undergraduates an overview and intuitive background for more advanced studies.

Theory of Stochastic Differential Equations with Jumps and Applications

Author: Rong SITU
Publisher: Springer Science & Business Media
ISBN: 0387251758
Format: PDF
Download Now
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.

Theory and applications of stochastic differential equations

Author: Zeev Schuss
Publisher: John Wiley & Sons Inc
ISBN:
Format: PDF, Mobi
Download Now
Presents theory, sources, and applications of stochastic differential equations of Ito's type; those containing white noise. Closely studies first passage problems by modern singular perturbation methods and their role in various fields of science. Introduces analytical methods to obtain information on probabilistic quantities. Demonstrates the role of partial differential equations in this context. Clarifies the relationship between the complex mathematical theories involved and sources of the problem for physicists, chemists, engineers, and other non-mathematical specialists.

Statistical Methods for Stochastic Differential Equations

Author: Mathieu Kessler
Publisher: CRC Press
ISBN: 1439849765
Format: PDF, Docs
Download Now
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation based on likelihood methods, estimating functions, and simulation techniques. Two chapters are devoted to high-frequency data. Multivariate models are also considered, including partially observed systems, asynchronous sampling, tests for simultaneous jumps, and multiscale diffusions. Statistical Methods for Stochastic Differential Equations is useful to the theoretical statistician and the probabilist who works in or intends to work in the field, as well as to the applied statistician or financial econometrician who needs the methods to analyze biological or financial time series.

Stochastic Flows and Stochastic Differential Equations

Author: Hiroshi Kunita
Publisher: Cambridge University Press
ISBN: 9780521599252
Format: PDF, ePub
Download Now
Stochastic analysis and stochastic differential equations are rapidly developing fields in probability theory and its applications. This book provides a systematic treatment of stochastic differential equations and stochastic flow of diffeomorphisms and describes the properties of stochastic flows. Professor Kunita's approach regards the stochastic differential equation as a dynamical system driven by a random vector field, including K. Itô's classical theory. Beginning with a discussion of Markov processes, martingales and Brownian motion, Kunita reviews Itô's stochastic analysis. He places emphasis on establishing that the solution defines a flow of diffeomorphisms. This flow property is basic in the modern and comprehensive analysis of the solution and will be applied to solve the first and second order stochastic partial differential equations. This book will be valued by graduate students and researchers in probability. It can also be used as a textbook for advanced probability courses.