Stochastic Models Information Theory and Lie Groups Volume 2

Author: Gregory S. Chirikjian
Publisher: Springer Science & Business Media
ISBN: 0817649433
Format: PDF, ePub, Mobi
Download Now
This two-volume set covers stochastic processes, information theory and Lie groups in a unified setting, bridging topics rarely studied together. The emphasis is on using stochastic, geometric, and group-theoretic concepts for modeling physical phenomena.

Stochastic Models Information Theory and Lie Groups Volume 1

Author: Gregory S. Chirikjian
Publisher: Springer Science & Business Media
ISBN: 0817648038
Format: PDF
Download Now
This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.

Harmonic Analysis for Engineers and Applied Scientists

Author: Gregory S. Chirikjian
Publisher: Courier Dover Publications
ISBN: 0486795640
Format: PDF, Docs
Download Now
Although the Fourier transform is among engineering's most widely used mathematical tools, few engineers realize that the extension of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. This self-contained approach, geared toward readers with a standard background in engineering mathematics, explores the widest possible range of applications to fields such as robotics, mechanics, tomography, sensor calibration, estimation and control, liquid crystal analysis, and conformational statistics of macromolecules. Harmonic analysis is explored in terms of particular Lie groups, and the text deals with only a limited number of proofs, focusing instead on specific applications and fundamental mathematical results. Forming a bridge between pure mathematics and the challenges of modern engineering, this updated and expanded volume offers a concrete, accessible treatment that places the general theory in the context of specific groups.

A Mathematical Introduction to Compressive Sensing

Author: Simon Foucart
Publisher: Springer Science & Business Media
ISBN: 0817649484
Format: PDF, Docs
Download Now
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Recent Applications of Harmonic Analysis to Function Spaces Differential Equations and Data Science

Author: Isaac Pesenson
Publisher: Birkhäuser
ISBN: 3319555561
Format: PDF, ePub, Docs
Download Now
The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume II is organized around the theme of recent applications of harmonic analysis to function spaces, differential equations, and data science, covering topics such as: The classical Fourier transform, the non-linear Fourier transform (FBI transform), cardinal sampling series and translation invariant linear systems. Recent results concerning harmonic analysis on non-Euclidean spaces such as graphs and partially ordered sets. Applications of harmonic analysis to data science and statistics Boundary-value problems for PDE's including the Runge–Walsh theorem for the oblique derivative problem of physical geodesy.

Geometrical Methods in Robotics

Author: J.M. Selig
Publisher: Springer Science & Business Media
ISBN: 1475724845
Format: PDF, Docs
Download Now
The main aim of this book is to introduce Lie groups and allied algebraic and geometric concepts to a robotics audience. These topics seem to be quite fashionable at the moment, but most of the robotics books that touch on these topics tend to treat Lie groups as little more than a fancy notation. I hope to show the power and elegance of these methods as they apply to problems in robotics. A subsidiary aim of the book is to reintroduce some old ideas by describing them in modem notation, particularly Study's Quadric-a description of the group of rigid motions in three dimensions as an algebraic variety (well, actually an open subset in an algebraic variety)-as well as some of the less well known aspects of Ball's theory of screws. In the first four chapters, a careful exposition of the theory of Lie groups and their Lie algebras is given. Except for the simplest examples, all examples used to illustrate these ideas are taken from robotics. So, unlike most standard texts on Lie groups, emphasis is placed on a group that is not semi-simple-the group of proper Euclidean motions in three dimensions. In particular, the continuous subgroups of this group are found, and the elements of its Lie algebra are identified with the surfaces of the lower Reuleaux pairs. These surfaces were first identified by Reuleaux in the latter half of the 19th century.

Stochastic Processes

Author: Pierre Del Moral
Publisher: CRC Press
ISBN: 1498701841
Format: PDF, Mobi
Download Now
Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.

An Introduction to the Uncertainty Principle

Author: Sundaram Thangavelu
Publisher: Springer Science & Business Media
ISBN: 9780817643300
Format: PDF, ePub
Download Now
Motivating this interesting monograph is the development of a number of analogs of Hardy's theorem in settings arising from noncommutative harmonic analysis. This is the central theme of this work. Specifically, it is devoted to connections among various theories arising from abstract harmonic analysis, concrete hard analysis, Lie theory, special functions, and the very interesting interplay between the noncompact groups that underlie the geometric objects in question and the compact rotation groups that act as symmetries of these objects. A tutorial introduction is given to the necessary background material. The second chapter establishes several versions of Hardy's theorem for the Fourier transform on the Heisenberg group and characterizes the heat kernel for the sublaplacian. In Chapter Three, the Helgason Fourier transform on rank one symmetric spaces is treated. Most of the results presented here are valid in the general context of solvable extensions of H-type groups. The techniques used to prove the main results run the gamut of modern harmonic analysis such as representation theory, spherical functions, Hecke-Bochner formulas and special functions. Graduate students and researchers in harmonic analysis will greatly benefit from this book.

Functions Spaces and Expansions

Author: Ole Christensen
Publisher: Springer Science & Business Media
ISBN: 9780817649807
Format: PDF, Kindle
Download Now
This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.