Structural Design Optimization Considering Uncertainties

Author: Yannis Tsompanakis
Publisher: CRC Press
ISBN: 9780203938522
Format: PDF
Download Now
Uncertainties play a dominant role in the design and optimization of structures and infrastructures. In optimum design of structural systems due to variations of the material, manufacturing variations, variations of the external loads and modelling uncertainty, the parameters of a structure, a structural system and its environment are not given, fixed coefficients, but random variables with a certain probability distribution. The increasing necessity to solve complex problems in Structural Optimization, Structural Reliability and Probabilistic Mechanics, requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest findings on structural optimization considering uncertainties. It contains selected contributions dealing with the use of probabilistic methods for the optimal design of different types of structures and various considerations of uncertainties. The first part is focused on reliability-based design optimization and the second part on robust design optimization. Comprising twenty-one, self-contained chapters by prominent authors in the field, it forms a complete collection of state-of-the-art theoretical advances and applications in the fields of structural optimization, structural reliability, and probabilistic computational mechanics. It is recommended to researchers, engineers, and students in civil, mechanical, naval and aerospace engineering and to professionals working on complicated costs-effective design problems.

Maintenance and Safety of Aging Infrastructure

Author: Dan Frangopol
Publisher: CRC Press
ISBN: 0203386280
Format: PDF, Kindle
Download Now
This book presents the latest research findings in the field of maintenance and safety of aging infrastructure. The invited contributions provide an overview of the use of advanced computational and/or experimental techniques in damage and vulnerability assessment as well as maintenance and retrofitting of aging structures and infrastructures such as buildings, bridges, lifelines and ships. Cost-efficient maintenance and management of civil infrastructure requires balanced consideration of both structural performance and the total cost accrued over the entire life-cycle considering uncertainties. In this context, major topics treated in this book include aging structures, climate adaptation, climate change, corrosion, cost, damage assessment, decision making, extreme events, fatigue life, hazards, hazard mitigation, inspection, life-cycle performance, maintenance, management, NDT methods, optimization, redundancy, reliability, repair, retrofit, risk, robustness, resilience, safety, stochastic control, structural health monitoring, sustainability, uncertainties and vulnerability. Applications include bridges, buildings, dams, marine structures, pavements, power distribution poles, offshore platforms, stadiums and transportation networks. This up-to-date overview of the field of maintenance and safety of aging infrastructure makes this book a must-have reference work for those involved with structures and infrastructures, including students, researchers and practitioners.

Bridge Maintenance Safety Management and Life Cycle Optimization

Author: Dan Frangopol
Publisher: CRC Press
ISBN: 041589137X
Format: PDF, ePub, Docs
Download Now
Bridge Maintenance, Safety, Management and Life-Cycle Optimization contains the lectures and papers presented at IABMAS 2010, the Fifth International Conference of the International Association for Bridge Maintenance and Safety (IABMAS), held in Philadelphia, Pennsylvania, USA from July 11 through 15, 2010. All major aspects of bridge maintenance, safety, management and life-cycle optimization are addressed including advanced and high performance materials, ageing of bridges, assessment and evaluation, bridge codes, bridge diagnostics, bridge management systems, bridge security, composites, design for durability, deterioration modeling, emerging technologies, fatigue, field testing, financial planning, health monitoring, innovations, inspection, life-cycle performance, load capacity assessment, loads, maintenance strategies, new technical and materials concepts, non-destructive testing, optimization strategies, prediction of future traffic demands, rehabilitation, reliability and risk management, repair, replacement, residual service life, safety and serviceability, service life prediction, strengthening, sustainable materials for bridges, sustainable bridges, whole-life costing, and multi-criteria optimization, among others. Bridge Maintenance, Safety, Management and Life-Cycle Optimization consists of a book of abstracts and a CD-ROM containing the full text of the lectures and papers presented at IABMAS 2010. This set provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of making more rational decisions in bridge maintenance, safety, security, serviceability, risk-based management, and health monitoring using traditional and emerging technologies for the purpose of enhancing the welfare of society.

Structural Identification and Damage Detection Using Genetic Algorithms

Author: Chan Ghee Koh
Publisher: CRC Press
ISBN: 9781138111929
Format: PDF, ePub, Mobi
Download Now
Rapid advances in computational methods and computer capabilities have led to a new generation of structural identification strategies. Robust and efficient methods have successfully been developed on the basis of genetic algorithms (GA). This volume presents the development of a novel GA-based identification strategy that contains several advantageous features compared to previous methods. Focusing on structural identification problems with limited and noise contaminated measurements; it provides insight into the effects of various identification parameters on the identification accuracy for systems with known mass. It then proposes a generalization for systems with unknown mass, stiffness and damping properties. The GA identification strategy is subsequently extended for structural damage detection. The findings of the output-only strategy and substructural identification represent a great leap forward from the practical point of view. This book is intended for researchers, engineers and graduate students in structural and mechanical engineering, particularly for those interested in model calibration, parameter estimation and damage detection of structural and mechanical systems using the state-of-the-art GA methodology.

Computational Structural Dynamics and Earthquake Engineering

Author: Manolis Papadrakakis
Publisher: CRC Press
ISBN: 9780203881637
Format: PDF
Download Now
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynamics, Structural Dynamics and Earthquake Engineering in thirty-five self-contained contributions. The selected state-of-the-art chapters are revised and extended versions of the papers which were presented as plenary, semi-plenary and keynote lectures at the thematic COMPDYN 2007 Conference. This volume will benefit researchers and engineering professionals working on structural dynamics, earthquake engineering and computational mechanics. Readers will get acquainted with advanced computational methods and software tools, which can assist them in tackling complex problems in dynamic/seismic analysis and design. Moreover, it will raise the awareness of important application areas and the social impact of the scientific and technical fields involved.

Life Cycle and Sustainability of Civil Infrastructure Systems

Author: Alfred Strauss
Publisher: CRC Press
ISBN: 020310336X
Format: PDF, Kindle
Download Now
Life-Cycle and Sustainability of Civil Infrastructure Systems contains the lectures and papers presented at the Third International Symposium on Life-Cycle Civil Engineering (IALCCE 2012) held in one of Vienna’s most famous venues, the Hofburg Palace, October 3rd-6th, 2012. This volume consists of a book of extended abstracts (516 pp) and a DVD-ROM with 344 full papers (2515 pp) presented at IALCCE 2012, including the Fazlur R. Khan Lecture, 10 Keynote Lectures, and 333 Technical Papers from 52 countries. All major aspects of life-cycle civil engineering are addressed, including aging of structures, deterioration modeling, durable materials, earthquake and accidental loadings, sustainability, fatigue and damage, structure-environment interaction, design for durability, failure analysis and risk prevention, lifetime structural optimization, long-term performance analysis, performance-based design, service life prediction, time-variant reliability, uncertainty modeling, damage identification, field testing, health monitoring, inspection and evaluation, maintenance strategies, rehabilitation techniques, strengthening and repair, structural integrity, decisionmaking processes, human factors in life-cycle engineering, life-cycle cost models, project management, lifetime risk analysis and optimization, whole life costing, artificial intelligence methods, bridges and viaducts, high rise buildings, offshore structures, precast systems, runway and highway pavements, tunnels and underground structures. This volume provides both an up-to-date overview of the field of life-cycle and sustainability in civil engineering and significant contributions to the decisionmaking process for the purpose of enhancing the welfare of society. The aim of the editors is to provide a valuable source of information for anyone interested in life-cycle and sustainability of civil infrastructure systems, including students, researchers and practitioners from all areas of engineering and industry.

Maintenance Monitoring Safety Risk and Resilience of Bridges and Bridge Networks

Author: Tulio Nogueira Bittencourt
Publisher: CRC Press
ISBN: 1498777031
Format: PDF, ePub, Mobi
Download Now
Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks contains the lectures and papers presented at the Eighth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), held in Foz do Iguaçu, Paraná, Brazil, 26-30 June, 2016. This volume consists of a book of extended abstracts and a DVD containing the full papers of 369 contributions presented at IABMAS 2016, including the T.Y. Lin Lecture, eight Keynote Lectures, and 360 technical papers from 38 countries. The contributions deal with the state-of-the-art as well as emerging concepts and innovative applications related to all main aspects of bridge maintenance, safety, management, resilience and sustainability. Major topics covered include: advanced materials, ageing of bridges, assessment and evaluation, bridge codes, bridge diagnostics, bridge management systems, composites, damage identification, design for durability, deterioration modeling, earthquake and accidental loadings, emerging technologies, fatigue, field testing, financial planning, health monitoring, high performance materials, inspection, life-cycle performance and cost, load models, maintenance strategies, non-destructive testing, optimization strategies, prediction of future traffic demands, rehabilitation, reliability and risk management, repair, replacement, residual service life, resilience, robustness, safety and serviceability, service life prediction, strengthening, structural integrity, and sustainability. This volume provides both an up-to-date overview of the field of bridge engineering as well as significant contributions to the process of making more rational decisions concerning bridge maintenance, safety, serviceability, resilience, sustainability, monitoring, risk-based management, and life-cycle performance using traditional and emerging technologies for the purpose of enhancing the welfare of society. It will serve as a valuable reference to all involved with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.

Maintenance Safety Risk Management and Life Cycle Performance of Bridges

Author: Nigel Powers
Publisher: CRC Press
ISBN: 1351745964
Format: PDF, Docs
Download Now
Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 Keynote Lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge diagnostics, health monitoring, non-destructive testing, field testing, safety and serviceability, assessment and evaluation, damage identification, deterioration modelling, repair and retrofitting strategies, bridge reliability, fatigue and corrosion, extreme loads, advanced experimental simulations, and advanced computer simulations, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of more rational decision-making on bridge maintenance, safety, risk, management and life-cycle performance of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.

Reliability and Optimization of Structural Systems

Author: Daniel Straub
Publisher: CRC Press
ISBN: 0203841417
Format: PDF, Mobi
Download Now
This volume contains 28 papers by renowned international experts on the latest advances in structural reliability methods and applications, engineering risk analysis and decision making, new optimization techniques and various applications in civil engineering. Moreover, several contributions focus on the assessment and optimization of existing structural systems. All contributions were presented at the 15th Working Conference of the International Federation of Information Processing (IFIP) Working Group 7.5 on Reliability and Optimization of Structural Systems, held at the Oskar von Miller Forum in Munich, Germany, April 2010. Working Group 7.5’s purposes are to promote modern structural system reliability and optimization theory and its applications, to stimulate research, development and application of structural system reliability and optimization theory, to assist and advance research and development in these fields, to further the dissemination and exchange of information on reliability and optimization of structural systems, and to encourage education in structural system reliability and optimization theory. This volume is intended for structural and mechanical engineers working and researching in structural optimization and risk/reliability analysis, applied to structural and infrastructural systems.

Structural Seismic Design Optimization and Earthquake Engineering Formulations and Applications

Author: Plevris, Vagelis
Publisher: IGI Global
ISBN: 1466616415
Format: PDF, ePub, Docs
Download Now
Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.