Structural Equations with Latent Variables

Author: Kenneth A. Bollen
Publisher: John Wiley & Sons
ISBN: 111861903X
Format: PDF, Mobi
Download Now
Analysis of Ordinal Categorical Data Alan Agresti Statistical Science Now has its first coordinated manual of methods for analyzing ordered categorical data. This book discusses specialized models that, unlike standard methods underlying nominal categorical data, efficiently use the information on ordering. It begins with an introduction to basic descriptive and inferential methods for categorical data, and then gives thorough coverage of the most current developments, such as loglinear and logit models for ordinal data. Special emphasis is placed on interpretation and application of methods and contains an integrated comparison of the available strategies for analyzing ordinal data. This is a case study work with illuminating examples taken from across the wide spectrum of ordinal categorical applications. 1984 (0 471-89055-3) 287 pp. Regression Diagnostics Identifying Influential Data and Sources of Collinearity David A. Belsley, Edwin Kuh and Roy E. Welsch This book provides the practicing statistician and econometrician with new tools for assessing the quality and reliability of regression estimates. Diagnostic techniques are developed that aid in the systematic location of data points that are either unusual or inordinately influential; measure the presence and intensity of collinear relations among the regression data and help to identify the variables involved in each; and pinpoint the estimated coefficients that are potentially most adversely affected. The primary emphasis of these contributions is on diagnostics, but suggestions for remedial action are given and illustrated. 1980 (0 471-05856-4) 292 pp. Applied Regression Analysis Second Edition Norman Draper and Harry Smith Featuring a significant expansion of material reflecting recent advances, here is a complete and up-to-date introduction to the fundamentals of regression analysis, focusing on understanding the latest concepts and applications of these methods. The authors thoroughly explore the fitting and checking of both linear and nonlinear regression models, using small or large data sets and pocket or high-speed computing equipment. Features added to this Second Edition include the practical implications of linear regression; the Durbin-Watson test for serial correlation; families of transformations; inverse, ridge, latent root and robust regression; and nonlinear growth models. Includes many new exercises and worked examples. 1981 (0 471-02995-5) 709 pp.

Latent Curve Models

Author: Kenneth A. Bollen
Publisher: John Wiley & Sons
ISBN: 0471746088
Format: PDF
Download Now
An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social scienceshighlights the need for this timely publication. Latent CurveModels: A Structural Equation Perspective provides an effectivetechnique to analyze latent curve models (LCMs). This type of datafeatures random intercepts and slopes that permit each case in asample to have a different trajectory over time. Furthermore,researchers can include variables to predict the parametersgoverning these trajectories. The authors synthesize a vast amount of research and findingsand, at the same time, provide original results. The book analyzesLCMs from the perspective of structural equation models (SEMs) withlatent variables. While the authors discuss simple regression-basedprocedures that are useful in the early stages of LCMs, most of thepresentation uses SEMs as a driving tool. This cutting-edge workincludes some of the authors' recent work on the autoregressivelatent trajectory model, suggests new models for method factors inmultiple indicators, discusses repeated latent variable models, andestablishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensiveuse of pedagogical tools to aid readers in mastering and applyingLCMs quickly and easily to their own data sets. Key featuresinclude: Chapter introductions and summaries that provide a quickoverview of highlights Empirical examples provided throughout that allow readers totest their newly found knowledge and discover practicalapplications Conclusions at the end of each chapter that stress theessential points that readers need to understand for advancement tomore sophisticated topics Extensive footnoting that points the way to the primaryliterature for more information on particular topics With its emphasis on modeling and the use of numerous examples,this is an excellent book for graduate courses in latent trajectorymodels as well as a supplemental text for courses in structuralmodeling. This book is an excellent aid and reference forresearchers in quantitative social and behavioral sciences who needto analyze longitudinal data.

Basic and Advanced Bayesian Structural Equation Modeling

Author: Sik-Yum Lee
Publisher: John Wiley & Sons
ISBN: 1118358872
Format: PDF, Docs
Download Now
This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduced, whilst SEM with a nonparametric structural equation to assess unspecified functional relationships among latent variables are also explored. Statistical methodologies are developed using the Bayesian approach giving reliable results for small samples and allowing the use of prior information leading to better statistical results. Estimates of the parameters and model comparison statistics are obtained via powerful Markov Chain Monte Carlo methods in statistical computing. Introduces the Bayesian approach to SEMs, including discussion on the selection of prior distributions, and data augmentation. Demonstrates how to utilize the recent powerful tools in statistical computing including, but not limited to, the Gibbs sampler, the Metropolis-Hasting algorithm, and path sampling for producing various statistical results such as Bayesian estimates and Bayesian model comparison statistics in the analysis of basic and advanced SEMs. Discusses the Bayes factor, Deviance Information Criterion (DIC), and $L_\nu$-measure for Bayesian model comparison. Introduces a number of important generalizations of SEMs, including multilevel and mixture SEMs, latent curve models and longitudinal SEMs, semiparametric SEMs and those with various types of discrete data, and nonparametric structural equations. Illustrates how to use the freely available software WinBUGS to produce the results. Provides numerous real examples for illustrating the theoretical concepts and computational procedures that are presented throughout the book. Researchers and advanced level students in statistics, biostatistics, public health, business, education, psychology and social science will benefit from this book.

Structural Equation Modeling

Author: Jichuan Wang
Publisher: John Wiley & Sons
ISBN: 1118356306
Format: PDF, ePub, Mobi
Download Now
A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a flexible tool to analyze their data with an easy-to-use interface and graphical displays of data and analysis results. Key features: Presents a useful reference guide for applications of SEM whilst systematically demonstrating various advanced SEM models, such as multi-group and mixture models using Mplus. Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes. Provides step-by-step instructions of model specification and estimation, as well as detail interpretation of Mplus results. Explores different methods for sample size estimate and statistical power analysis for SEM. By following the examples provided in this book, readers will be able to build their own SEM models using Mplus. Teachers, graduate students, and researchers in social sciences and health studies will also benefit from this book.

Corporate Governance ffentlicher Unternehmen

Author: Peter Daiser
Publisher: Springer-Verlag
ISBN: 3658234482
Format: PDF, Mobi
Download Now
Peter Daiser nimmt in dieser empirischen Untersuchung eine integrierte Betrachtung von Corporate-Governance-Einflussfaktoren und deren Wirkung auf den kommunalen Corporate-Governance-Erfolg vor. Die Ergebnisse lassen den Schluss zu, dass eine aktive, gestaltende Rolle der Kommune bei der Steuerung und Kontrolle öffentlicher Unternehmen zu einem höheren Corporate-Governance-Erfolg führt als eine passive Kontrollfunktion. Ferner sollten überwachende Tätigkeiten behutsam eingesetzt werden, da sich ein hohes Maß an Kontrolle negativ auf den Corporate-Governance-Erfolg auswirken kann. Aus den Ergebnissen werden Empfehlungen für Wissenschaft und Praxis abgeleitet.

Structural Equation Modeling

Author: Sik-Yum Lee
Publisher: Wiley
ISBN: 9780470024232
Format: PDF, ePub, Mobi
Download Now
***Winner of the 2008 Ziegel Prize for outstanding new book of the year*** Structural equation modeling (SEM) is a powerful multivariate method allowing the evaluation of a series of simultaneous hypotheses about the impacts of latent and manifest variables on other variables, taking measurement errors into account. As SEMs have grown in popularity in recent years, new models and statistical methods have been developed for more accurate analysis of more complex data. A Bayesian approach to SEMs allows the use of prior information resulting in improved parameter estimates, latent variable estimates, and statistics for model comparison, as well as offering more reliable results for smaller samples. Structural Equation Modeling introduces the Bayesian approach to SEMs, including the selection of prior distributions and data augmentation, and offers an overview of the subject’s recent advances. Demonstrates how to utilize powerful statistical computing tools, including the Gibbs sampler, the Metropolis-Hasting algorithm, bridge sampling and path sampling to obtain the Bayesian results. Discusses the Bayes factor and Deviance Information Criterion (DIC) for model comparison. Includes coverage of complex models, including SEMs with ordered categorical variables, and dichotomous variables, nonlinear SEMs, two-level SEMs, multisample SEMs, mixtures of SEMs, SEMs with missing data, SEMs with variables from an exponential family of distributions, and some of their combinations. Illustrates the methodology through simulation studies and examples with real data from business management, education, psychology, public health and sociology. Demonstrates the application of the freely available software WinBUGS via a supplementary website featuring computer code and data sets. Structural Equation Modeling: A Bayesian Approach is a multi-disciplinary text ideal for researchers and students in many areas, including: statistics, biostatistics, business, education, medicine, psychology, public health and social science.

Latent Variable Models and Factor Analysis

Author: David J. Bartholomew
Publisher: John Wiley & Sons
ISBN: 1119973708
Format: PDF, ePub, Docs
Download Now
Latent Variable Models and Factor Analysis provides a comprehensive and unified approach to factor analysis and latent variable modeling from a statistical perspective. This book presents a general framework to enable the derivation of the commonly used models, along with updated numerical examples. Nature and interpretation of a latent variable is also introduced along with related techniques for investigating dependency. This book: Provides a unified approach showing how such apparently diverse methods as Latent Class Analysis and Factor Analysis are actually members of the same family. Presents new material on ordered manifest variables, MCMC methods, non-linear models as well as a new chapter on related techniques for investigating dependency. Includes new sections on structural equation models (SEM) and Markov Chain Monte Carlo methods for parameter estimation, along with new illustrative examples. Looks at recent developments on goodness-of-fit test statistics and on non-linear models and models with mixed latent variables, both categorical and continuous. No prior acquaintance with latent variable modelling is pre-supposed but a broad understanding of statistical theory will make it easier to see the approach in its proper perspective. Applied statisticians, psychometricians, medical statisticians, biostatisticians, economists and social science researchers will benefit from this book.

Handbook of Structural Equation Modeling

Author: Rick H. Hoyle
Publisher: Guilford Publications
ISBN: 1462516793
Format: PDF, Kindle
Download Now
The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, including new and emerging topics in SEM. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with readers' data. Many of the chapters also include access to data and syntax files at the companion website, allowing readers to try their hands at reproducing the authors' results.

Statistical Group Comparison

Author: Tim Futing Liao
Publisher: John Wiley & Sons
ISBN: 1118150619
Format: PDF, ePub, Docs
Download Now
An incomparably useful examination of statistical methods forcomparison The nature of doing science, be it natural or social, inevitablycalls for comparison. Statistical methods are at the heart of suchcomparison, for they not only help us gain understanding of theworld around us but often define how our research is to be carriedout. The need to compare between groups is best exemplified byexperiments, which have clearly defined statistical methods.However, true experiments are not always possible. What complicatesthe matter more is a great deal of diversity in factors that arenot independent of the outcome. Statistical Group Comparison brings together a broad range ofstatistical methods for comparison developed over recent years. Thebook covers a wide spectrum of topics from the simplest comparisonof two means or rates to more recently developed statisticsincluding double generalized linear models and Bayesian as well ashierarchical methods. Coverage includes: * Testing parameter equality in linear regression and othergeneralized linear models (GLMs), in order of increasingcomplexity * Likelihood ratio, Wald, and Lagrange multiplier statisticsexamined where applicable * Group comparisons involving latent variables in structuralequation modeling * Models of comparison for categorical latent variables Examples are drawn from the social, political, economic, andbiomedical sciences; many can be implemented using widely availablesoftware. Because of the range and the generality of thestatistical methods covered, researchers across manydisciplines-beyond the social, political, economic, and biomedicalsciences-will find the book a convenient reference for many aresearch situation where comparisons may come naturally.