Synthesis Crystal Growth and Characterization

Author: K. Lal
Publisher: Elsevier
ISBN: 008098469X
Format: PDF, ePub
Download Now
Synthesis, Crystal Growth and Characterization presents the proceedings of the International School on Synthesis, Crystal Growth and Characterization of Materials for Energy Conversion and Storage, held on October 12-23, 1981, at the National Physical Laboratory in New Delhi, India. The book consists of lectures by distinguished scientists from around the world who tackle different aspects of synthesis, crystal growth, characterization of materials, energy conversion, and energy storage. Organized into four parts encompassing 26 chapters, the book begins with an overview of the synthesis of materials at high temperatures and pressures before turning to a discussion of how macrocrystalline and amorphous silicon is prepared. It then looks at fundamental principles underlying the process of crystal growth, both from the vapor phase and from melt, and methodically introduces the reader to the different techniques used to characterize materials, including neutron scattering and electron transport. The next chapters focus on point defects and aggregates that influence the critical electronic properties of semiconducting materials, X-ray diffraction studies of strains and stresses in thin films used in solid-state devices, and electron spectroscopic studies of solid surfaces. The book also considers the role of physics in microelectronics and vice versa, fast ion transport in solids, and the concept of Syadvada in relation to modern physics. This volume is a valuable resource for participants of the International School on Synthesis, Crystal Growth and Characterization of Materials for Energy Conversion and Storage, as well as active researchers working in areas related to the field.

Synthesis Crystal Growth Structural and Magnetic Characterization of NH4MCl2 HCOO M

Author:
Publisher:
ISBN:
Format: PDF, Kindle
Download Now
In this paper, an ambient-pressure solution route and an improved solvothermal synthetic method have been developed to produce polycrystalline powders and large single crystals of NH4MCl2(HCOO) (M=Fe, Co, Ni). The magnetic structure of the 1D linear chain compound NH4FeCl2(HCOO) has been determined by low-temperature neutron powder diffraction, revealing ferromagnetic intra-chain interactions and antiferromagnetic inter-chain interactions. Finally, the newly-reported Co and Ni analogs are isostructural with NH4FeCl2(HCOO), but there are significant differences in the magnetic properties of each compound; the Ni analog behaves similarly to the Fe compound but with stronger magnetic coupling, exhibiting antiferromagnetic ordering (TN=8.5 K) and a broad metamagnetic transition between 2 and 5 T, while the Co analog does not order magnetically above 2 K, despite strong antiferromagnetic nearest-neighbor interactions.

Growth and Characterization of Bulk Superconductor Material

Author: Dapeng Chen
Publisher: Springer
ISBN: 331931548X
Format: PDF, ePub
Download Now
This book focuses on recently developed crystal growth techniques to grow large and high quality superconducting single crystals. The techniques applied are traveling solvent floating zone (TSFZ) with infrared image furnace, Bridgeman, solution/flux and top seeded solution growth (TSSG) methods. The materials range from cuprates, cobaltates to pnictides including La2CuO4-based (LCO), YBa2Cu3O7-d (YBCO), Bi2Sr2Can−1CunO2n+4+δ (n=1,2,3) (BSCCO) to NaxCoO2. The modified Bridgman “cold finger” method is devoted to the pnictide system with the best quality (transition width DTc~0.5 K) with highest Tc~38.5 K of Ba0.68K0.32Fe2A2. The book presents various iron-based superconductors with different structures, such as 1111, 122, 111, 11 and 42622,10-3-8. Detailed single crystal growth methods (fluxes, Bridgman, floating zone), the associated procedures and their impact to crystal size and quality are presented. The book also describes the influence of doping on the structure and the electric, magnetic, and superconducting properties of these compounds in a comparative study of different growth methods. It describes particularly under-, optimal and over-doped with oxygen cuprates (LCO, YBCO and BSCCO) and hole/electron/isovalently doped parent compounds AFe2As2 (A = Ba, Sr, Ca) (122), chalcogenides AxFe2-ySe2(A = K, Rb, Cs) (122), and Fe1-dTe1-xSex (11). A review of the current growth technologies and future growth efforts handling volatile and poisonous components are also presented.

Crystal Growth Technology

Author: K. Byrappa
Publisher: Springer Science & Business Media
ISBN: 9783540003670
Format: PDF, ePub, Docs
Download Now
Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers. The book begins with "Growth Histories of Mineral Crystals" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.

Growth And Characterization Of Technologically Important Nonlinear Optical Crystals Cesium Lithium Borate And Potassium Di Deuterium Phosphate

Author:
Publisher:
ISBN:
Format: PDF, ePub, Mobi
Download Now
Present day advanced technologies heavily rely on one particular class of matter, i.e. the crystals. It is the periodic nature of the atoms and the properties arising due to the periodicity in crystals that is exploited to meet various technological feats. The technological revolutions in the semiconductor, optics and communication industries are the examples. The anisotropy in the crystals gives them enhanced properties as required in the field of non-linear optics. The field of non-linear optics became practically a reality after the invention of lasers. The coherent and monochromatic optical beams in the visible and ultraviolet ranges are in high demand due to their application in the fields like material processing, semiconductor lithography, laser micromachining, laser spectroscopy, photochemical synthesis, inertial confinement fusion and other basic scientific studies. In this thesis, work on the growth and characterization of two technologically important non-linear optical crystals has been carried out after developing the necessary instrumentation and some novel techniques for synthesis and growth. Also, studies on the glassy nature of one of the crystals have been carried out. This thesis consists of seven chapters. The first chapter gives a brief introduction to the nonlinear optical phenomenon, crystal growth and glassy state. Instrumentation is the backbone of crystal research technology. Without precision growth equipments large size crystals cannot be grown and without precision characterization instrumentation no conclusion regarding the quality and usefulness of the grown material can be drawn. The work reported in Chapter 2 describes the instrumentation developed for the growth, processing and characterization of crystals grown by solution and melt growth techniques. In low temperature solution growth, crystal growth workstations have been developed using tanks (made of acrylic), heating elements, and stirring propellers. Cooling coils have been in.

Frontiers in Crystalline Matter

Author: National Research Council
Publisher: National Academies Press
ISBN: 9780309147026
Format: PDF
Download Now
For much of the past 60 years, the U.S. research community dominated the discovery of new crystalline materials and the growth of large single crystals, placing the country at the forefront of fundamental advances in condensed-matter sciences and fueling the development of many of the new technologies at the core of U.S. economic growth. The opportunities offered by future developments in this field remain as promising as the achievements of the past. However, the past 20 years have seen a substantial deterioration in the United States' capability to pursue those opportunities at a time when several European and Asian countries have significantly increased investments in developing their own capacities in these areas. This book seeks both to set out the challenges and opportunities facing those who discover new crystalline materials and grow large crystals and to chart a way for the United States to reinvigorate its efforts and thereby return to a position of leadership in this field.

Handbook of Crystal Growth

Author: Peter Rudolph
Publisher: Elsevier
ISBN: 0444633065
Format: PDF, Mobi
Download Now
Vol 2A: Basic Technologies Handbook of Crystal Growth, 2nd Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated. Vol 2B: Growth Mechanisms and Dynamics Handbook of Crystal Growth, 2nd Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy. Volume 2A Presents the status and future of Czochralski and float zone growth of dislocation-free silicon Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B Explores capillarity control of the crystal shape at the growth from the melt Highlights modeling of heat and mass transport dynamics Discusses control of convective melt processes by magnetic fields and vibration measures Includes imperative information on the segregation phenomenon and validation of compositional homogeneity Examines crystal defect generation mechanisms and their controllability Illustrates proper automation modes for ensuring constant crystal growth process Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries

Growth and Characterization of Scheelite Crystals

Author: Mohit tyagi
Publisher:
ISBN: 9783639360400
Format: PDF, Mobi
Download Now
A large number of tungstate (AWO4) and molybdate (AMoO4), where 'A' stands for large size divalent ions like Ca, Pb or Ba are naturally occurring crystals. Their scheelite structure is characterized by tetrahedrally coordinated (WO4)2-/(MoO4)2- group positioned at four corners of a unit cell and the divalent A2- located at bcc is octahedrally coordinated with oxygen ions. Though scheelites have been investigated for over 50 years, issues related to their luminescent emission still remained unresolved. In this thesis single crystal growth experiments on lead molybdate PbMoO4 (PMO), barium tungstate BaWO4 (BWO), and sodium bismuth double tungstate NaBi(WO4)2 (NBW) have been carried out using the Czochralski (CZ) technique. Structural, electronic and optical properties of these three crystals, all having the same crystalline structure were investigated experimentally as well as theoretically. Specific aspects as (a) material synthesis (b) crystal growth (c) transmission and coloration (d) photoluminescence and (e) electronic structure have been discussed in detail.