Text Mining and Visualization

Author: Markus Hofmann
Publisher: CRC Press
ISBN: 148223758X
Format: PDF, Kindle
Download Now
Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors—all highly experienced with text mining and open-source software—explain how text data are gathered and processed from a wide variety of sources, including books, server access logs, websites, social media sites, and message boards. Each chapter presents a case study that you can follow as part of a step-by-step, reproducible example. You can also easily apply and extend the techniques to other problems. All the examples are available on a supplementary website. The book shows you how to exploit your text data, offering successful application examples and blueprints for you to tackle your text mining tasks and benefit from open and freely available tools. It gets you up to date on the latest and most powerful tools, the data mining process, and specific text mining activities.

Human Capital Systems Analytics and Data Mining

Author: Robert C. Hughes
Publisher: CRC Press
ISBN: 1498764797
Format: PDF
Download Now
Human Capital Systems, Analytics, and Data Mining provides human capital professionals, researchers, and students with a comprehensive and portable guide to human capital systems, analytics and data mining. The main purpose of this book is to provide a rich tool set of methods and tutorials for Human Capital Management Systems (HCMS) database modeling, analytics, interactive dashboards, and data mining that is independent of any human capital software vendor offerings and is equally usable and portable among both commercial and internally developed HCMS. The book begins with an overview of HCMS, including coverage of human resource systems history and current HCMS Computing Environments. It next explores relational and dimensional database management concepts and principles. HCMS Instructional databases developed by the Author for use in Graduate Level HCMS and Compensation Courses are used for database modeling and dashboard design exercises. Exciting knowledge discovery and research Tutorials and Exercises using Online Analytical Processing (OLAP) and data mining tools through replication of actual original pay equity research by the author are included. New findings concerning Gender Based Pay Equity Research through the lens Comparable Worth and Occupational Mobility are covered extensively in Human Capital Metrics, Analytics and Data Mining Chapters.

Feature Engineering for Machine Learning and Data Analytics

Author: Guozhu Dong
Publisher: CRC Press
ISBN: 1351721275
Format: PDF, Docs
Download Now
Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Exploratory Data Analysis Using R

Author: Ronald K. Pearson
Publisher: CRC Press
ISBN: 0429847033
Format: PDF, Mobi
Download Now
Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" – good, bad, and ugly – features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data. The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing. The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available. About the Author: Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network).

RapidMiner

Author: Markus Hofmann
Publisher: CRC Press
ISBN: 1482205505
Format: PDF, ePub, Docs
Download Now
Powerful, Flexible Tools for a Data-Driven World As the data deluge continues in today’s world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of increasingly complex problems. Learn from the Creators of the RapidMiner Software Written by leaders in the data mining community, including the developers of the RapidMiner software, RapidMiner: Data Mining Use Cases and Business Analytics Applications provides an in-depth introduction to the application of data mining and business analytics techniques and tools in scientific research, medicine, industry, commerce, and diverse other sectors. It presents the most powerful and flexible open source software solutions: RapidMiner and RapidAnalytics. The software and their extensions can be freely downloaded at www.RapidMiner.com. Understand Each Stage of the Data Mining Process The book and software tools cover all relevant steps of the data mining process, from data loading, transformation, integration, aggregation, and visualization to automated feature selection, automated parameter and process optimization, and integration with other tools, such as R packages or your IT infrastructure via web services. The book and software also extensively discuss the analysis of unstructured data, including text and image mining. Easily Implement Analytics Approaches Using RapidMiner and RapidAnalytics Each chapter describes an application, how to approach it with data mining methods, and how to implement it with RapidMiner and RapidAnalytics. These application-oriented chapters give you not only the necessary analytics to solve problems and tasks, but also reproducible, step-by-step descriptions of using RapidMiner and RapidAnalytics. The case studies serve as blueprints for your own data mining applications, enabling you to effectively solve similar problems.

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Format: PDF, Mobi
Download Now
Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Korrespondenzbausteine Italienisch

Author: Ulrich Schoenwald
Publisher: Springer-Verlag
ISBN: 332290590X
Format: PDF, ePub, Docs
Download Now
Mit Hilfe dieses Buches können Sie Geschäftsbriefe in allen Bereiche- ob Einladung oder Mahnung, Angebot oder Reklamation - schnell und korrekt abfassen. Sie finden komplette Musterbriefe mit Übersetzung, aber auch einzelne Absätze und Sätze, aus denen Sie Ihre Texte zusam mensetzen können oder die Sie einfach in Ihren eigenen Brief einfügen. Alle Texte sind so formuliert, daß sie sich leicht für individuelle Zwecke ändern lassen. Doch nicht nur die Brieftexte müssen einwandfrei sein - auch die Form muß stimmen. Auf den folgenden Seiten können Sie sich deshalb über die verschiedenen Schreibweisen von Anschrift, Datum, Betreff, Bezug, Anrede, Gruß und Anlagenvermerk informieren. Selbstverständlich sind diese Hinweise keine Gesetze, an die man sich unbedingt halten muß. Wenn auch das Schaubild Ihrer Briefe dem entspricht, was Ihre Ge schäftspartner gewohnt sind, dann erleichtern Sie die Verständlichkeit und damit die Verständigung - eine der wichtigsten Voraussetzungen für die erfolgreiche Zusammenarbeit. Nach den Erläuterungen zum italienischen Geschäftsbrief folgen Informa tionen - auf italienisch - zum deutschen Geschäftsbrief. Die Korrespondenzbausteine beginnen auf den Seiten 32 und 33; links steht jeweils der deutsche Text, rechts die italienische Fassung.

Hei auf Kaltakquise in 45 Minuten

Author: Tim Taxis
Publisher: BoD – Books on Demand
ISBN: 3000377468
Format: PDF
Download Now
Keiner mag die Kaltakquise. Gleichzeitig ist und bleibt das Telefon der effektivste Weg zu neuen Business-Kunden. Stellt sich die Frage: Wie kann der telefonische Erstkontakt authentisch, einfach und überdurchschnittlich erfolgreich gelingen? Mehr noch: Wie kann die Telefonakquise sogar Spaß machen - Ihnen und dem Kunden? Die Antwort liefert dieses Buch. Der Autor zeigt darin nicht nur, WAS es zu tun gilt, sondern vor allem auch: WIE genau. Kurz, prägnant, relevant - mit vielen 1:1- Beispielen aus der Praxis für die Praxis. Aus dem Inhalt: Heißstart: Akquise-Telefonate live Kaltakquise: Schluss mit Schema F Vorbereitung: Darauf sollten Sie achten Wie Sie das Vorzimmer erobern So gewinnen Sie den Entscheider Deutschlands Top-Trainer, Tim Taxis, ist etwas gelungen, was es schon lange nicht mehr gab: wirklich neue Ansätze in der Kaltakquise zu entwickeln. Diese Ansätze sind dabei so effektiv, dass sie in der Praxis wie selbstverständlich umsetzbar sind. Christian Petschik, Vice President Sales, arvato AG - ein Bertelsmann Unternehmen

Real Time Data Mining

Author: Florian Stompe
Publisher: Diplomica Verlag
ISBN: 3836678799
Format: PDF, ePub, Docs
Download Now
Data Mining ist ein inzwischen etabliertes, erfolgreiches Werkzeug zur Extraktion von neuem, bislang unbekanntem Wissen aus Daten. In mittlerweile fast allen gr eren Unternehmen wird es genutzt um Mehrwerte f r Kunden zu generieren, den Erfolg von Marketingkampagnen zu erh hen, Betrugsverdacht aufzudecken oder beispielsweise durch Segmentierung unterschiedliche Kundengruppen zu identifizieren. Ein Grundproblem der intelligenten Datenanalyse besteht darin, dass Daten oftmals in rasanter Geschwindigkeit neu entstehen. Eink ufe im Supermarkt, Telefonverbindungen oder der ffentliche Verkehr erzeugen t glich eine neue Flut an Daten, in denen potentiell wertvolles Wissen steckt. Die versteckten Zusammenh nge und Muster k nnen sich im Zeitverlauf mehr oder weniger stark ver ndern. Datenmodellierung findet in der Regel aber noch immer einmalig bzw. sporadisch auf dem Snapshot einer Datenbank statt. Einmal erkannte Muster oder Zusammenh nge werden auch dann noch angenommen, wenn diese l ngst nicht mehr bestehen. Gerade in dynamischen Umgebungen wie zum Beispiel einem Internet-Shop sind Data Mining Modelle daher schnell veraltet. Betrugsversuche k nnen dann unter Umst nden nicht mehr erkannt, Absatzpotentiale nicht mehr genutzt werden oder Produktempfehlungen basieren auf veralteten Warenk rben. Um dauerhaft Wettbewerbsvorteile erzielen zu k nnen, muss das Wissen ber Daten aber m glichst aktuell und von ausgezeichneter Qualit t sein. Der Inhalt dieses Buches skizziert Methoden und Vorgehensweisen von Data Mining in Echtzeit.