The Augmented Spherical Wave Method

Author: Volker Eyert
Publisher: Springer
ISBN: 3540710078
Format: PDF, ePub
Download Now
The Augmented Spherical Wave (ASW) method is one of the powerful approaches to handle the requirement of finite basis sets in DFT calculations. It is particularly suited for the calculation of elastic properties and phonon spectra of solid-state materials. This book addresses all those who want to learn about methods for electronic structure calculations and the ASW method in particular.

Full Potential Electronic Structure Method

Author: John M. Wills
Publisher: Springer Science & Business Media
ISBN: 9783642151446
Format: PDF, Mobi
Download Now
This is a book describing electronic structure theory and application within the framework of a methodology implemented in the computer code RSPt. In 1986, when the code that was to become RSPt was developed enough to be useful, it was one of the ?rst full-potential, all-electron, relativistic implem- tations of DFT (density functional theory). While RSPt was documented p- asitically in many publications describing the results of its application, it was many years before a publication explicitly describing aspects of the method appeared. In the meantime, several excellent all-electron, full-potential me- ods had been developed, published, and become available. So why a book about RSPt now? The code that became RSPt was initially developed as a personal research tool, rather than a collaborative e?ort or as a product. As such it required some knowledge of its inner workings to use, and as it was meant to be m- imally ?exible, the code required experience to be used e?ectively. These - tributes inhibited, but did not prevent, the spread of RSPt as a research tool. While applicable across the periodic table, the method is particularly useful in describing a wide range of materials, including heavier elements and c- pounds, and its ?exibility provides targeted accuracy and a convenient and accurate framework for implementing and assessing the e?ect of new models.

Modelling and Numerical Simulations II

Author: Mordechay Schlesinger
Publisher: Springer Science & Business Media
ISBN: 9780387495866
Format: PDF, ePub
Download Now
The present volume is the second in a two-volume set dealing with modelling and numerical simulations in electrochemistry. Emphasis is placed on the aspect of nanoelectrochemical issues. It seems appropriate at this juncture to mention the n- growing body of opinion in some circles that George Box was right when he stated, three decades ago, that “All models are wrong, but some are useful”. Actually, when the statement itself was made it would have been more appropriate to say that “All models are inaccurate but most are useful nonetheless”. At present, however, the statement, as it was made, is far more appropriate and closer to the facts than ever before. Currently, we are in the midst of the age of massively abundant data. Today’s philosophy seems to be that we do not need to know why one piece of information is better than another except through the statistics of incoming and outgoing links between information and this is good enough. It is why, both in principle and in practice, one can translate between two languages, without knowledge of either. While none of this can be ignored, and it may even be true that “All models are wrong and increasingly you can succeed without them” the traditional approach of scienti?c modelling is still the order of the day. That approach may be stated as hypothesize – measure – model – test. It is in this light that the present volume should be viewed.

Computer Vision

Author: Richard Szeliski
Publisher: Springer
ISBN: 9781848829466
Format: PDF, Kindle
Download Now
Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Quantum Chromodynamics on the Lattice

Author: Christof Gattringer
Publisher: Springer
ISBN: 3642018505
Format: PDF, ePub
Download Now
This introduction to quantum chromodynamics presents the basic concepts and calculations in a clear and didactic style accessible to those new to the field. Readers will find useful methods for obtaining numerical results, including pure gauge theory and quenched spectroscopy.

High Voltage Engineering

Author: Peter Kuffel
Publisher: Elsevier
ISBN: 1483285650
Format: PDF, ePub, Docs
Download Now
Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and overvoltages and insulation coordination.

An Introduction to Complex Systems

Author: Paul Fieguth
Publisher: Springer
ISBN: 3319446061
Format: PDF, Docs
Download Now
This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or perspective. Instead, the book seeks to emphasize understanding, concepts, and ideas, in a way that is mathematically rigorous, so that the concepts do not feel vague, but not so technical that the mathematics get in the way. The book is intended for undergraduate students in a technical domain such as engineering, computer science, physics, mathematics, and environmental studies.

The Analysis of Fractional Differential Equations

Author: Kai Diethelm
Publisher: Springer
ISBN: 3642145744
Format: PDF, Mobi
Download Now
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.