The Behavior of Thin Walled Structures Beams Plates and Shells

Author: Jack R. Vinson
Publisher: Springer Science & Business Media
ISBN: 9400927746
Format: PDF, Docs
Download Now
This book is intended primarily as a teaching text, as well as a reference for individual study in the behavior of thin walled structural components. Such structures are widely used in the engineering profession for spacecraft, missiles, aircraft, land-based vehicles, ground structures, ocean craft, underwater vessels and structures, pressure vessels, piping, chemical processing equipment, modern housing, etc. It presupposes that the reader has already completed one basic course in the mechanics or strength of materials. It can be used for both undergraduate and graduate courses. Since beams (columns, rods), plates and shells comprise components of so many of these modern structures, it is necessary for engineers to have a working knowledge of their behavior when these structures are subjected to static, dynamic (vibration and shock) and environmental loads. Since this text is intended for both teaching and self-study, it stresses fundamental behavior and techniques of solution. It is not an encyclopedia of all research or design data, but provides the reader the wherewithal to read and study the voluminous literature. Chapter 1 introduces the three-dimensional equations oflinear elasticity, deriving them to the extent necessary to treat the following material. Chapter 2 presents, in a concise way, the basic assumptions and derives the governing equations for classical Bernoulli-Euler beams and plates in a manner that is clearly understood.

The Behavior of Shells Composed of Isotropic and Composite Materials

Author: Jack R. Vinson
Publisher: Springer Science & Business Media
ISBN: 940158141X
Format: PDF, Docs
Download Now
Shell structures are used in all phases of structures, from space vehicles to deep submergence hulls, from nuclear reactors to domes on sport arenas and civic buildings. With new materials and manufacturing methods, curved thin walled structures are being used increasingly. This text is a graduate course in the theory of shells. It covers shells of isotropic materials, such as metal alloys and plastics, and shells of composite materials, such as fibre reinforced polymer, metal or ceramic matrix materials. It provides the essential information for an understanding of the underlying theory, and solution of some of the basic problems. It also provides a basis to study the voluminous shell literature. Beyond being primarily a textbook, it is intended also for self study by practising engineers who would like to learn more about the behaviour of shells. The book has two parts: Part I deals with shells of isotropic materials. In this part the mathematical formulations are introduced involving curvilinear coordinates. The techniques of solutions and resulting behavior is compared to planar thin walled isotropic structures such as plates and beams. Part II then treats the behavior of shells, involving anisotropic composite materials, so widely used today. The analysis involves the complications due to the many elastic constants, effects of transverse shear deformation, thermal thickening and offer effects arising from the properties of composite materials.

Advances in Structural Optimization

Author: José Herskovits
Publisher: Springer Science & Business Media
ISBN: 9780792325109
Format: PDF, Mobi
Download Now
Advances in Structural Optimization presents the techniques for a wide set of applications, ranging from the problems of size and shape optimization (historically the first to be studied) to topology and material optimization. Structural models are considered that use both discrete and finite elements. Structural materials can be classical or new. Emerging methods are also addressed, such as automatic differentiation, intelligent structures optimization, integration of structural optimization in concurrent engineering environments, and multidisciplinary optimization. For researchers and designers in industries such as aerospace, automotive, mechanical, civil, nuclear, naval and offshore. A reference book for advanced undergraduate or graduate courses on structural optimization and optimum design.

Progress in Structural Engineering

Author: Donald E. Grierson
Publisher: Springer Science & Business Media
ISBN: 9401136165
Format: PDF, Docs
Download Now
We three editors of this volume are former Ph. D. students of Professor Mircea Cohn at the University of Waterloo, Canada. Donald Grierson obtained his Ph. D. degree in 1968, Alberto Franchi in 1977, and Paolo Riva in 1988, and as such, we span almost the entire career of Professor Cohn at Waterloo. Even though we graduated during different decades in his life, we share similar views of Mircea Cohn as an educator, researcher and man. Together we recall that he was very firm in his resolve that we get the most out of the education he was facilitating for us. Together we agree that he was inspirational in his desire to have us carry out the very best research work we were capable of. Together we feel particularly fortunate to have had such a dedicated and distinguished individual as Professor Cohn as our Ph. D. research advisor. It is with great pleasure that we ack nowledge him as our mentor and friend. We began in 1989 to plan this volume as a tribute to Professor Cohn on the occasion of his 65th birthday in 1991. Upon contacting his many former students and research associates from around the world, we were not surprised to find that they too shared our feelings of respect and admiration for Mircea Cohn as an educator, researcher and man.

The behavior of structures composed of composite materials

Author: Jack R. Vinson
Publisher: Springer Science & Business Media
ISBN: 9400951876
Format: PDF, ePub
Download Now
While currently available texts dealing with the subject of high perfor mance composite materials touch upon a spectra of topics such as mechanical metallurgy, physical metallurgy, micromechanics and macro mechanics of such systems, it is the specific purpose of this text to examine elements of the mechanics of structural components composed of composite materials. This text is intended for use in training engineers in this new technology and rational thought processes necessary to develop a better understanding of the behavior of such material systems for use as structural components. The concepts are further exploited in terms of the structural format and development to which the book is dedicated. To this end the development progresses systematically by first introducing the notion and concepts of what these new material classes are, the fabrication processes involved and their unique features relative to conventional monolithic materials. Such introductory remarks, while far too short in texts of this type, appear necessary as a precursor for engineers to develop a better understanding for design purposes of both the threshold limits to which the properties of such systems can be pushed as well as the practical limitations on their manufacture. Following these introductory remarks, an in-depth discussion of the important differences between composites and conventional monolithic material types is discussed in terms of developing the concepts associated with directional material properties.

Advances in Steel Structures

Author: S.L. Chan
Publisher: Elsevier
ISBN: 9780080526812
Format: PDF, ePub, Mobi
Download Now
These two volumes of proceedings contain nine invited keynote papers and 130 contributed papers presented at the Third International Conference on Advances in Steel Structures (ICASS '02) held on 9-11 December 2002 in Hong Kong, China. The conference is a sequel to the First and the Second International Conferences on Advances in Steel Structures held in Hong Kong in December 1996 and 1999. The conference provides a forum for discussion and dissemination by researchers and designers of recent advances in the analysis, behaviour, design and construction of steel structures. Papers were contributed from over 18 countries around the world. They report current state-of-the art and point to future directions of structural steel research, covering a wide spectrum of topics including: beams and columns; connections; scaffolds and slender structures; cold-formed steel; composite construction; plates; shells; bridges; dynamics; impact mechanics; effects of welding; fatigue and fracture; fire performance; and analysis and design.

Sound and Structural Vibration

Author: Frank J. Fahy
Publisher: Elsevier
ISBN: 0080517374
Format: PDF, ePub
Download Now
This book presents a unified qualitative and quantitative account of the physical mechanisms and characteristics of linear interaction between audio-frequency vibrational motion in compressible fluids and structures with which they are in contact. The primary purpose is to instruct the reader in theoretical approaches to the modelling and analysis of interactions, whilst simultaneously providing physical explanations of their dependence upon the parameters of the coupled systems. It is primarily to the engineering student that the book is addressed, in the firm belief that a good engineer remains a student throughout his professional life. A preoccupation with the relevance and validity of theoretical analyses in relation to practical problems is a hallmark of results obtained from theoretical analysis of idealized models and the behaviour of the less than ideal realities from which they are abstracted.

Shell Structures Theory and Applications

Author: Wojciech Pietraszkiewicz
Publisher: CRC Press
ISBN: 1138000825
Format: PDF, ePub
Download Now
Shells are basic structural elements of modern technology and everyday life. Examples are automobile bodies, water and oil tanks, pipelines, aircraft fuselages, nanotubes, graphene sheets or beer cans. Also nature is full of living shells such as leaves of trees, blooming flowers, seashells, cell membranes, the double helix of DNA or wings of insects. In the human body arteries, the shell of the eye, the diaphragm, the skin or the pericardium are all shells as well. Shell Structures: Theory and Applications, Volume 3 contains 137 contributions presented at the 10th Conference “Shell Structures: Theory and Applications” held October 16-18, 2013 in Gdansk, Poland. The papers cover a wide spectrum of scientific and engineering problems which are divided into seven broad groups: general lectures, theoretical modelling, stability, dynamics, bioshells, numerical analyses, and engineering design. The volume will be of interest to researchers and designers dealing with modelling and analyses of shell structures and thin-walled structural elements.