The Nature of Mathematical Modeling

Author: Neil A. Gershenfeld
Publisher: Cambridge University Press
ISBN: 9780521570954
Format: PDF, ePub
Download Now
This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.

Mathematische Modellierung

Author: Christof Eck
Publisher: Springer-Verlag
ISBN: 3662543354
Format: PDF, ePub, Docs
Download Now
Das Lehrbuch bietet eine lebendige und anschauliche Einführung in die mathematische Modellierung von Phänomenen aus den Natur- und Ingenieurwissenschaften. Leser lernen, mathematische Modelle zu verstehen und selbst herzuleiten und finden eine Fülle von Beispielen, u. a. aus den Bereichen chemische Reaktionskinetik, Populationsdynamik, Strömungsdynamik, Elastizitätstheorie und Kristallwachstum. Die Methoden der Linearen Algebra, der Analysis und der Theorie der gewöhnlichen und partiellen Differentialgleichungen werden sorgfältig eingeführt.

Applied Mathematical Modeling

Author: Douglas R. Shier
Publisher: CRC Press
ISBN: 9781420050042
Format: PDF, Kindle
Download Now
The practice of modeling is best learned by those armed with fundamental methodologies and exposed to a wide variety of modeling experience. Ideally, this experience could be obtained by working on actual modeling problems. But time constraints often make this difficult. Applied Mathematical Modeling provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in practice. These chapters discuss the general components of the modeling process, and the evolutionary nature of successful model building. The second part provides a rich compendium of case studies, each one complete with examples, exercises, and projects. In keeping with the multidimensional nature of the models presented, the chapters in the second part are listed in alphabetical order by the contributor's last name. Unlike most mathematical books, in which you must master the concepts of early chapters to prepare for subsequent material, you may start with any chapter. Begin with cryptology, if that catches your fancy, or go directly to bursty traffic if that is your cup of tea. Applied Mathematical Modeling serves as a handbook of in-depth case studies that span the mathematical sciences, building upon a modest mathematical background. Readers in other applied disciplines will benefit from seeing how selected mathematical modeling philosophies and techniques can be brought to bear on problems in their disciplines. The models address actual situations studied in chemistry, physics, demography, economics, civil engineering, environmental engineering, industrial engineering, telecommunications, and other areas.

Mathematics in Nature

Author: John A. Adam
Publisher: Princeton University Press
ISBN: 1400841011
Format: PDF, ePub, Mobi
Download Now
From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature. Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathematics can be used to formulate and solve puzzles observed in nature and to interpret the solutions. In the process, it teaches such topics as the art of estimation and the effects of scale, particularly what happens as things get bigger. Readers will develop an understanding of the symbiosis that exists between basic scientific principles and their mathematical expressions as well as a deeper appreciation for such natural phenomena as cloud formations, halos and glories, tree heights and leaf patterns, butterfly and moth wings, and even puddles and mud cracks. Developed out of a university course, this book makes an ideal supplemental text for courses in applied mathematics and mathematical modeling. It will also appeal to mathematics educators and enthusiasts at all levels, and is designed so that it can be dipped into at leisure.

Alternate realities

Author: J. L. Casti
Publisher: Wiley-Interscience
ISBN:
Format: PDF, Mobi
Download Now
Praise for Alternate Realities Mathematical Models of Nature and Man "â¦covers the major topics completely and accurately within the context of current knowledge. Indeed, to my knowledge, there is no book which does so nearly as completely and well." âGeorge Leitmann, University of California, Berkeley "Surveys an extensive amount of modern mathematicsâ¦introduces and outlines some of these basic modern ideas for the non-specialist." âDonald G. Saari, Northwestern University "A sophisticated and modern text on mathematical modellingâ¦much more comprehensive than any of its competitors currently on the market." âGeorge Klir, State University of New York at Binghamton "Castiâs approach is fearless in constructing conceptual mappings between reality and mathematical notions. The book is pioneering in nature." âMyron B. Allen, University of Wyoming An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Mathematical Models in Population Biology and Epidemiology

Author: Fred Brauer
Publisher: Springer Science & Business Media
ISBN: 9780387989020
Format: PDF, ePub, Mobi
Download Now
The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.

Mathematical Modeling in Ecology

Author: C. Jeffries
Publisher: Springer Science & Business Media
ISBN: 1461245508
Format: PDF, ePub, Docs
Download Now
Mathematical ecology is the application of mathematics to describe and understand ecosystems. There are two main approaches. One is to describe natural communities and induce statistical patterns or relationships which should generally occur. However, this book is devoted entirely to introducing the student to the second approach: to study deterministic mathematical models and, on the basis of mathematical results on the models, to look for the same patterns or relationships in nature. This book is a compromise between three competing desiderata. It seeks to: maximize the generality of the models; constrain the models to "behave" realistically, that is, to exhibit stability and other features; and minimize the difficulty of presentations of the models. The ultimate goal of the book is to introduce the reader to the general mathematical tools used in building realistic ecosystem models. Just such a model is presented in Chapter Nine. The book should also serve as a stepping-stone both to advanced mathematical works like Stability of Biological Communities by Yu. M. Svirezhev and D. O. Logofet (Mir, Moscow, 1983) and to advanced modeling texts like Freshwater Ecosystems by M. Straskraba and A. H. Gnauch (Elsevier, Amsterdam, 1985).

Selected mathematical models in environmental impact assessment in Canada

Author: Michel de Broissia
Publisher: Canadian Environmental Assessment Research Council
ISBN:
Format: PDF, ePub
Download Now
Background paper which reviewed mathematical models used in the evaluation and prediction of environmental impacts due to new projects. Includes a description of current models, the nature of their utilization and the existence of validation and/or verification steps.

Mathematical Modeling with Multidisciplinary Applications

Author: Xin-She Yang
Publisher: Wiley
ISBN: 9781118294413
Format: PDF, Mobi
Download Now
Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the book presents new and emerging topics in areas including finance and economics, theoretical and applied mathematics, engineering and machine learning, physics, chemistry, ecology, and social science. In addition, the book thoroughly summarizes widely used mathematical and numerical methods in mathematical modeling and features: Diverse topics such as partial differential equations (PDEs), fractional calculus, inverse problems by ordinary differential equations (ODEs), semigroups, decision theory, risk analysis, Bayesian estimation, nonlinear PDEs in financial engineering, perturbation analysis, and dynamic system modeling Case studies and real-world applications that are widely used for current mathematical modeling courses, such as the green house effect and Stokes flow estimation Comprehensive coverage of a wide range of contemporary topics, such as game theory, statistical models, and analytical solutions to numerical methods Examples, exercises with select solutions, and detailed references to the latest literature to solidify comprehensive learning New techniques and applications with balanced coverage of PDEs, discrete models, statistics, fractional calculus, and more Mathematical Modeling with Multidisciplinary Applications is an excellent book for courses on mathematical modeling and applied mathematics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for research scientists, mathematicians, and engineers who would like to develop further insights into essential mathematical tools.

Modeling Students Mathematical Modeling Competencies

Author: Richard Lesh
Publisher: Springer Science & Business Media
ISBN: 9400762712
Format: PDF, ePub
Download Now
Modeling Students’ Mathematical Modeling Competencies offers welcome clarity and focus to the international research and professional community in mathematics, science, and engineering education, as well as those involved in the sciences of teaching and learning these subjects.