The Nature of Mathematical Modeling

Author: Neil A. Gershenfeld
Publisher: Cambridge University Press
ISBN: 9780521570954
Format: PDF, Docs
Download Now
This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.

The Nature of Mathematical Modeling

Author: Neil A. Gershenfeld
Publisher: Cambridge University Press
ISBN: 9780521570954
Format: PDF, Kindle
Download Now
This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.

Mathematical Modeling with Multidisciplinary Applications

Author: Xin-She Yang
Publisher: John Wiley & Sons
ISBN: 1118458621
Format: PDF, Kindle
Download Now
Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the book presents new and emerging topics in areas including finance and economics, theoretical and applied mathematics, engineering and machine learning, physics, chemistry, ecology, and social science. In addition, the book thoroughly summarizes widely used mathematical and numerical methods in mathematical modeling and features: Diverse topics such as partial differential equations (PDEs), fractional calculus, inverse problems by ordinary differential equations (ODEs), semigroups, decision theory, risk analysis, Bayesian estimation, nonlinear PDEs in financial engineering, perturbation analysis, and dynamic system modeling Case studies and real-world applications that are widely used for current mathematical modeling courses, such as the green house effect and Stokes flow estimation Comprehensive coverage of a wide range of contemporary topics, such as game theory, statistical models, and analytical solutions to numerical methods Examples, exercises with select solutions, and detailed references to the latest literature to solidify comprehensive learning New techniques and applications with balanced coverage of PDEs, discrete models, statistics, fractional calculus, and more Mathematical Modeling with Multidisciplinary Applications is an excellent book for courses on mathematical modeling and applied mathematics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for research scientists, mathematicians, and engineers who would like to develop further insights into essential mathematical tools.

Mathematics in Nature

Author: John A. Adam
Publisher: Princeton University Press
ISBN: 1400841011
Format: PDF, Docs
Download Now
From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature. Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathematics can be used to formulate and solve puzzles observed in nature and to interpret the solutions. In the process, it teaches such topics as the art of estimation and the effects of scale, particularly what happens as things get bigger. Readers will develop an understanding of the symbiosis that exists between basic scientific principles and their mathematical expressions as well as a deeper appreciation for such natural phenomena as cloud formations, halos and glories, tree heights and leaf patterns, butterfly and moth wings, and even puddles and mud cracks. Developed out of a university course, this book makes an ideal supplemental text for courses in applied mathematics and mathematical modeling. It will also appeal to mathematics educators and enthusiasts at all levels, and is designed so that it can be dipped into at leisure.

Mathematical and Computational Modeling

Author: Roderick Melnik
Publisher: John Wiley & Sons
ISBN: 1118853857
Format: PDF, ePub
Download Now
Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, industrial, and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.

An Introduction to Mathematical Modeling

Author: Edward A. Bender
Publisher: Courier Corporation
ISBN: 0486137120
Format: PDF
Download Now
Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

Topics in Mathematical Modeling

Author: K. K. Tung
Publisher: Princeton University Press
ISBN: 1400884055
Format: PDF, Kindle
Download Now
Topics in Mathematical Modeling is an introductory textbook on mathematical modeling. The book teaches how simple mathematics can help formulate and solve real problems of current research interest in a wide range of fields, including biology, ecology, computer science, geophysics, engineering, and the social sciences. Yet the prerequisites are minimal: calculus and elementary differential equations. Among the many topics addressed are HIV; plant phyllotaxis; global warming; the World Wide Web; plant and animal vascular networks; social networks; chaos and fractals; marriage and divorce; and El Niño. Traditional modeling topics such as predator-prey interaction, harvesting, and wars of attrition are also included. Most chapters begin with the history of a problem, follow with a demonstration of how it can be modeled using various mathematical tools, and close with a discussion of its remaining unsolved aspects. Designed for a one-semester course, the book progresses from problems that can be solved with relatively simple mathematics to ones that require more sophisticated methods. The math techniques are taught as needed to solve the problem being addressed, and each chapter is designed to be largely independent to give teachers flexibility. The book, which can be used as an overview and introduction to applied mathematics, is particularly suitable for sophomore, junior, and senior students in math, science, and engineering.

Alternate realities

Author: J. L. Casti
Publisher: Wiley-Interscience
ISBN:
Format: PDF, ePub, Docs
Download Now
Praise for Alternate Realities Mathematical Models of Nature and Man "â¦covers the major topics completely and accurately within the context of current knowledge. Indeed, to my knowledge, there is no book which does so nearly as completely and well." âGeorge Leitmann, University of California, Berkeley "Surveys an extensive amount of modern mathematicsâ¦introduces and outlines some of these basic modern ideas for the non-specialist." âDonald G. Saari, Northwestern University "A sophisticated and modern text on mathematical modellingâ¦much more comprehensive than any of its competitors currently on the market." âGeorge Klir, State University of New York at Binghamton "Castiâs approach is fearless in constructing conceptual mappings between reality and mathematical notions. The book is pioneering in nature." âMyron B. Allen, University of Wyoming An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Applied Mathematical Modeling

Author: Douglas R. Shier
Publisher: CRC Press
ISBN: 9781420050042
Format: PDF, Mobi
Download Now
The practice of modeling is best learned by those armed with fundamental methodologies and exposed to a wide variety of modeling experience. Ideally, this experience could be obtained by working on actual modeling problems. But time constraints often make this difficult. Applied Mathematical Modeling provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in practice. These chapters discuss the general components of the modeling process, and the evolutionary nature of successful model building. The second part provides a rich compendium of case studies, each one complete with examples, exercises, and projects. In keeping with the multidimensional nature of the models presented, the chapters in the second part are listed in alphabetical order by the contributor's last name. Unlike most mathematical books, in which you must master the concepts of early chapters to prepare for subsequent material, you may start with any chapter. Begin with cryptology, if that catches your fancy, or go directly to bursty traffic if that is your cup of tea. Applied Mathematical Modeling serves as a handbook of in-depth case studies that span the mathematical sciences, building upon a modest mathematical background. Readers in other applied disciplines will benefit from seeing how selected mathematical modeling philosophies and techniques can be brought to bear on problems in their disciplines. The models address actual situations studied in chemistry, physics, demography, economics, civil engineering, environmental engineering, industrial engineering, telecommunications, and other areas.

Mathematical Modelling

Author: Seyed M. Moghadas
Publisher: John Wiley & Sons
ISBN: 1119483999
Format: PDF, Kindle
Download Now
An important resource that provides an overview of mathematical modelling Mathematical Modelling offers a comprehensive guide to both analytical and computational aspects of mathematical modelling that encompasses a wide range of subjects. The authors provide an overview of the basic concepts of mathematical modelling and review the relevant topics from differential equations and linear algebra. The text explores the various types of mathematical models, and includes a range of examples that help to describe a variety of techniques from dynamical systems theory. The book’s analytical techniques examine compartmental modelling, stability, bifurcation, discretization, and fixed-point analysis. The theoretical analyses involve systems of ordinary differential equations for deterministic models. The text also contains information on concepts of probability and random variables as the requirements of stochastic processes. In addition, the authors describe algorithms for computer simulation of both deterministic and stochastic models, and review a number of well-known models that illustrate their application in different fields of study. This important resource: Includes a broad spectrum of models that fall under deterministic and stochastic classes and discusses them in both continuous and discrete forms Demonstrates the wide spectrum of problems that can be addressed through mathematical modelling based on fundamental tools and techniques in applied mathematics and statistics Contains an appendix that reveals the overall approach that can be taken to solve exercises in different chapters Offers many exercises to help better understand the modelling process Written for graduate students in applied mathematics, instructors, and professionals using mathematical modelling for research and training purposes, Mathematical Modelling: A Graduate Textbook covers a broad range of analytical and computational aspects of mathematical modelling.