The Nature of Mathematics and the Mathematics of Nature

Author: S. Andersson
Publisher: Elsevier
ISBN: 9780080537344
Format: PDF, Kindle
Download Now
Chemistry, physics and biology are by their nature genuinely difficult. Mathematics, however, is man-made, and therefore not as complicated. Two ideas form the basis for this book: 1) to use ordinary mathematics to describe the simplicity in the structure of mathematics and 2) to develop new branches of mathematics to describe natural sciences. Mathematics can be described as the addition, subtraction or multiplication of planes. Using the exponential scale the authors show that the addition of planes gives the polyhedra, or any solid. The substraction of planes gives saddles. The multiplication of planes gives the general saddle equations and the multispirals. The equation of symmetry is derived, which contains the exponential scale with its functions for solids, the complex exponentials with the nodal surfaces, and the GD (Gauss Distribution) mathematics with finite periodicity. Piece by piece, the authors have found mathematical functions for the geometrical descriptions of chemical structures and the structure building operations. Using the mathematics for dilatation; twins, trillings, fourlings and sixlings are made, and using GD mathematics these are made periodic. This description of a structure is the nature of mathematics itself. Crystal structures and 3D mathematics are synonyms. Mathematics are used to describe rod packings, Olympic rings and defects in solids. Giant molecules such as cubosomes, the DNA double helix, and certain building blocks in protein structures are also described mathematically.

Nature of Mathematics

Author: Karl J. Smith
Publisher: Cengage Learning
ISBN: 1133947255
Format: PDF, ePub
Download Now
Written for liberal arts students and based on the belief that learning to solve problems is the principal reason for studying mathematics, Karl Smith introduces students to Polya’s problem-solving techniques and shows them how to use these techniques to solve unfamiliar problems that they encounter in their own lives. Through the emphasis on problem solving and estimation, along with numerous in-text study aids, students are assisted in understanding the concepts and mastering the techniques. In addition to the problem-solving emphasis, THE NATURE OF MATHEMATICS is renowned for its clear writing, coverage of historical topics, selection of topics, level, and excellent applications problems. Smith includes material on such practical real-world topics as finances (e.g. amortization, installment buying, annuities) and voting and apportionment. With the help of this text, thousands of students have experienced mathematics rather than just do problems--and benefited from a writing style that boosts their confidence and fosters their ability to use mathematics effectively in their everyday lives. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

The Nature of Mathematics

Author: Max Black
Publisher: Taylor & Francis
ISBN: 9780415225427
Format: PDF, ePub, Docs
Download Now
First published in 2000. Routledge is an imprint of Taylor & Francis, an informa company.

The Nature of Mathematical Knowledge

Author: Philip Kitcher
Publisher: Oxford University Press on Demand
ISBN: 0195035410
Format: PDF, ePub, Mobi
Download Now
This book argues against the view that mathematical knowledge is a priori, contending that mathematics is an empirical science and develops historically, just as natural sciences do. Kitcher presents a complete, systematic, and richly detailed account of the nature of mathematical knowledgeand its historical development, focusing on such neglected issues as how and why mathematical language changes, why certain questions assume overriding importance, and how standards of proof are modified.

18 Unconventional Essays on the Nature of Mathematics

Author: Reuben Hersh
Publisher: Springer Science & Business Media
ISBN: 0387298312
Format: PDF
Download Now
Collection of the most interesting recent writings on the philosophy of mathematics written by highly respected researchers from philosophy, mathematics, physics, and chemistry Interdisciplinary book that will be useful in several fields—with a cross-disciplinary subject area, and contributions from researchers of various disciplines

The Nature of Mathematics

Author: Philip E. B. Jourdain
Publisher: Courier Corporation
ISBN: 0486154963
Format: PDF, ePub, Mobi
Download Now
Anyone interested in mathematics will appreciate this survey, which explores the distinction between the body of knowledge known as mathematics and the methods used in its discovery. 1913 edition.

Cultural Foundations of Mathematics

Author: C. K. Raju
Publisher: Pearson Education India
ISBN: 9788131708712
Format: PDF, Mobi
Download Now
The Volume Examines, In Depth, The Implications Of Indian History And Philosophy For Contemporary Mathematics And Science. The Conclusions Challenge Current Formal Mathematics And Its Basis In The Western Dogma That Deduction Is Infallible (Or That It Is Less Fallible Than Induction). The Development Of The Calculus In India, Over A Thousand Years, Is Exhaustively Documented In This Volume, Along With Novel Insights, And Is Related To The Key Sources Of Wealth-Monsoon-Dependent Agriculture And Navigation Required For Overseas Trade - And The Corresponding Requirement Of Timekeeping. Refecting The Usual Double Standard Of Evidence Used To Construct Eurocentric History, A Single, New Standard Of Evidence For Transmissions Is Proposed. Using This, It Is Pointed Out That Jesuits In Cochin, Following The Toledo Model Of Translation, Had Long-Term Opportunity To Transmit Indian Calculus Texts To Europe. The European Navigational Problem Of Determining Latitude, Longitude, And Loxodromes, And The 1582 Gregorian Calendar-Reform, Provided Ample Motivation. The Mathematics In These Earlier Indian Texts Suddenly Starts Appearing In European Works From The Mid-16Th Century Onwards, Providing Compelling Circumstantial Evidence. While The Calculus In India Had Valid Pramana, This Differed From Western Notions Of Proof, And The Indian (Algorismus) Notion Of Number Differed From The European (Abacus) Notion. Hence, Like Their Earlier Difficulties With The Algorismus, Europeans Had Difficulties In Understanding The Calculus, Which, Like Computer Technology, Enhanced The Ability To Calculate, Albeit In A Way Regarded As Epistemologically Insecure. Present-Day Difficulties In Learning Mathematics Are Related, Via Phylogeny Is Ontogeny , To These Historical Difficulties In Assimilating Imported Mathematics. An Appendix Takes Up Further Contemporary Implications Of The New Philosophy Of Mathematics For The Extension Of The Calculus, Which Is Needed To Handle The Infinities Arising In The Study Of Shock Waves And The Renormalization Problem Of Quantum Field Theory.

The Language of Mathematics

Author: Bill Barton
Publisher: Springer Science & Business Media
ISBN: 0387728597
Format: PDF
Download Now
The book emerges from several contemporary concerns in mathematics, language, and mathematics education. However, the book takes a different stance with respect to language by combining discussion of linguistics and mathematics using examples from each to illustrate the other. The picture that emerges is of a subject that is much more contingent, much more relative, much more subject to human experience than is usually accepted. Another way of expressing this, is that the thesis of the book takes the idea of mathematics as a human creation, and, using the evidence from language, comes to more radical conclusions than most writers allow.

The Nature and Growth of Modern Mathematics

Author: Edna Ernestine Kramer
Publisher: Princeton University Press
ISBN: 9780691023724
Format: PDF, Mobi
Download Now
Now available in a one-volume paperback, this book traces the development of the most important mathematical concepts, giving special attention to the lives and thoughts of such mathematical innovators as Pythagoras, Newton, Poincare, and Godel. Beginning with a Sumerian short story--ultimately linked to modern digital computers--the author clearly introduces concepts of binary operations; point-set topology; the nature of post-relativity geometries; optimization and decision processes; ergodic theorems; epsilon-delta arithmetization; integral equations; the beautiful "ideals" of Dedekind and Emmy Noether; and the importance of "purifying" mathematics. Organizing her material in a conceptual rather than a chronological manner, she integrates the traditional with the modern, enlivening her discussions with historical and biographical detail.