The Nuts and Bolts of Proofs

Author: Antonella Cupillari
Publisher: Academic Press
ISBN: 0123822181
Format: PDF
Download Now
The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics

Engineering Writing by Design

Author: Edward J. Rothwell
Publisher: CRC Press
ISBN: 1498700950
Format: PDF, ePub, Mobi
Download Now
Engineers are smart people. Their work is important, which is why engineering material should be written as deliberately and carefully as it will be read. Engineering Writing by Design: Creating Formal Documents of Lasting Value demonstrates how effective writing can be achieved through engineering-based thinking. Based on the authors’ combined experience as engineering educators, the book presents a novel approach to technical writing, positioning formal writing tasks as engineering design problems with requirements, constraints, protocols, standards, and customers (readers) to satisfy. Specially crafted for busy engineers and engineering students, this quick-reading, conversational text: Describes how to avoid logical fallacies and use physical reasoning to catch mistakes in claims Covers the essentials of technical grammar and style as well as the elements of mathematical exposition Emphasizes the centrality of the target audience, and thus the need for clear and concise prose Engineering Writing by Design: Creating Formal Documents of Lasting Value addresses the specific combination of thinking and writing skills needed to succeed in modern engineering. Its mantra is: to write like an engineer, you must think like an engineer. Featuring illustrative examples, chapter summaries and exercises, quick-reference tables, and recommendations for further reading, this book is packed with valuable tips and information practicing and aspiring engineers need to become effective writers.

Understanding Mathematical Proof

Author: John Taylor
Publisher: CRC Press
ISBN: 1466514914
Format: PDF, ePub, Docs
Download Now
The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students’ ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples.

Mathe Magie

Author: Arthur Benjamin
Publisher: Heyne Verlag
ISBN: 3641148472
Format: PDF, ePub
Download Now
Zaubern mit Zahlen – wer dieses Buch gelesen hat, muss PISA nicht mehr fürchten Wer glaubt, Mathematik sei eine trockene Angelegenheit und Kopfrechnen eine unnötige Quälerei, der irrt sich gewaltig. Denn nach der Lektüre dieses Buches ist es für jeden ein Leichtes, Rechenoperationen mit vier- und fünfstelligen Zahlen in Sekundenschnelle im Kopf auszuführen. Und was wie Zauberei wirkt, ist letztendlich nichts anderes als mathematische Logik, die jedermann beherrschen kann und die dazu noch richtig Spaß macht. • So wird Kopfrechnen kinderleicht! • Mit zahlreichen Übungen und Lösungen

Das BUCH der Beweise

Author: Martin Aigner
Publisher: Springer-Verlag
ISBN: 3662577674
Format: PDF, Mobi
Download Now
Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln. Aus den Rezensionen: “... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.” Aus der Laudatio für den “Steele Prize for Mathematical Exposition” 2018 "Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten." www.mathematik.de, Mai 2002 "Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker." www.vismath.de "Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999 "Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern." www.mathematik.de, Mai 2002

Diskrete Mathematik

Author: Martin Aigner
Publisher: Springer-Verlag
ISBN: 3322854965
Format: PDF, ePub, Mobi
Download Now
Vor 50 Jahren gab es den Begriff "Diskrete Mathematik" nicht, und er ist auch heute im deutschen Sprachraum keineswegs gebrauchlich. Vorlesungen dazu werden nicht iiberall und schon gar nicht mit einem einheitlichen Themenkatalog angeboten (im Gegensatz zum Beispiel zu den USA, wo sie seit langem einen festen Platz haben). Die Mathematiker verstehen unter Diskreter Mathematik meist Kombinatorik oder Graphentheorie, die Informatiker Diskrete Strukturen oder Boolesche Algebren. Das Hauptanliegen dieses Buches ist daher, solch einen Themenkatalog zu prasentieren, der alle Grundlagen fiir ein weiterfiihrendes Studium enthalt. Die Diskrete Mathematik beschaftigt sich vor allem mit endlichen Mengen. Was kann man in endlichen Mengen studieren? Ais allererstes kann man sie abzahlen, dies ist das klassische Thema der Kombinatorik - in Teil I werden wir die wich tigsten Ideen und Methoden zur Abzahlung kennenlernen. Auf endlichen Mengen ist je nach Aufgabenstellung meist eine einfache Struktur in Form von Relationen gegeben, von denen die anwendungsreichsten die Graphen sind. Diese Aspekte fas sen wir in Teil II unter dem Titel Graphen uncl Algorithmen zusammen. Und schlieBlich existiert auf endlichen Mengen oft eine algebraische Struktur (oder man kann eine solche auf natiirliche Weise erklaren). Algebraische Systeme sind der Inhalt von Teil III. Diese drei Gesichtspunkte bilden den roten Faden des Buches. Ein weiterer Aspekt, der die Darstellung durchgehend pragt, betrifft den Begriff der Optimierung.

Logik f r Dummies

Author: Mark Zegarelli
Publisher: John Wiley & Sons
ISBN: 3527687262
Format: PDF, ePub, Docs
Download Now
Logik ist die Basis der Wissenschaft, aber auch eine Br?cke zwischen Wissenschaft und Alltag, denn die Grundlagen sind einfach logisch. Doch so einfach sie auf den ersten Blick scheint, so anspruchsvoll ist sie im Detail. "Logik kompakt f?r Dummies" f?hrt Sie systematisch und so einfach wie m?glich in dieses Teilgebiet von Mathematik und Philosophie ein. Dabei arbeitet Mark Zegarelli mit anschaulichen Beispielen und schafft es so, dieses abstrakte Thema nicht nur verst?ndlich zu erkl?ren, sondern auch Wert und Nutzen der Logik aufzuzeigen.

Was ist Mathematik

Author: Richard Courant
Publisher: Springer-Verlag
ISBN: 3662000539
Format: PDF, Mobi
Download Now
47 brauchen nur den Nenner n so groß zu wählen, daß das Intervall [0, IJn] kleiner wird als das fragliche Intervall [A, B], dann muß mindestens einer der Brüche m/n innerhalb des Intervalls liegen. Also kann es kein noch so kleines Intervall auf der Achse geben, das von rationalen Punkten frei wäre. Es folgt weiterhin, daß es in jedem Intervall unendlich viele rationale Punkte geben muß; denn wenn es nur eine endliche Anzahl gäbe, so könnte das Intervall zwischen zwei beliebigen benachbarten Punkten keine rationalen Punkte enthalten, was, wie wir eben sahen, unmöglich ist. § 2. Inkommensurable Strecken, irrationale Zahlen und der Grenzwertbegriff 1. Einleitung Vergleicht man zwei Strecken a und b hinsichtlich ihrer Größe, so kann es vor kommen, daß a in b genau r-mal enthalten ist, wobei r eine ganze Zahl darstellt. In diesem Fall können wir das Maß der Strecke b durch das von a ausdrücken, indem wir sagen, daß die Länge von b das r-fache der Länge von a ist.