The Skew Normal and Related Families

Author: Adelchi Azzalini
Publisher: Cambridge University Press
ISBN: 1107029279
Format: PDF, Kindle
Download Now
The standard resource for statisticians and applied researchers. Accessible to the wide range of researchers who use statistical modelling techniques.

The Skew Normal and Related Families

Author: Adelchi Azzalini
Publisher: Cambridge University Press
ISBN: 1107729319
Format: PDF, Docs
Download Now
Interest in the skew-normal and related families of distributions has grown enormously over recent years, as theory has advanced, challenges of data have grown, and computational tools have made substantial progress. This comprehensive treatment, blending theory and practice, will be the standard resource for statisticians and applied researchers. Assuming only basic knowledge of (non-measure-theoretic) probability and statistical inference, the book is accessible to the wide range of researchers who use statistical modelling techniques. Guiding readers through the main concepts and results, it covers both the probability and the statistics sides of the subject, in the univariate and multivariate settings. The theoretical development is complemented by numerous illustrations and applications to a range of fields including quantitative finance, medical statistics, environmental risk studies, and industrial and business efficiency. The author's freely available R package sn, available from CRAN, equips readers to put the methods into action with their own data.

The Skew Normal and Related Families

Author: Adelchi Azzalini
Publisher: Cambridge University Press
ISBN: 9781108461139
Format: PDF
Download Now
Interest in the skew-normal and related families of distributions has grown enormously over recent years, as theory has advanced, challenges of data have grown, and computational tools have made substantial progress. This comprehensive treatment, blending theory and practice, will be the standard resource for statisticians and applied researchers. Assuming only basic knowledge of (non-measure-theoretic) probability and statistical inference, the book is accessible to the wide range of researchers who use statistical modelling techniques. Guiding readers through the main concepts and results, it covers both the probability and the statistics sides of the subject, in the univariate and multivariate settings. The theoretical development is complemented by numerous illustrations and applications to a range of fields including quantitative finance, medical statistics, environmental risk studies, and industrial and business efficiency. The author's freely available R package sn, available from CRAN, equips readers to put the methods into action with their own data.

Skew Elliptical Distributions and Their Applications

Author: Marc G. Genton
Publisher: CRC Press
ISBN: 9780203492000
Format: PDF, ePub, Mobi
Download Now
This book reviews the state-of-the-art advances in skew-elliptical distributions and provides many new developments in a single volume, collecting theoretical results and applications previously scattered throughout the literature. The main goal of this research area is to develop flexible parametric classes of distributions beyond the classical normal distribution. The book is divided into two parts. The first part discusses theory and inference for skew-elliptical distribution. The second part examines applications and case studies, including areas such as economics, finance, oceanography, climatology, environmetrics, engineering, image processing, astronomy, and biomedical science.

Statistical Inference Based on the likelihood

Author: Adelchi Azzalini
Publisher: Routledge
ISBN: 1351414461
Format: PDF, Docs
Download Now
The Likelihood plays a key role in both introducing general notions of statistical theory, and in developing specific methods. This book introduces likelihood-based statistical theory and related methods from a classical viewpoint, and demonstrates how the main body of currently used statistical techniques can be generated from a few key concepts, in particular the likelihood. Focusing on those methods, which have both a solid theoretical background and practical relevance, the author gives formal justification of the methods used and provides numerical examples with real data.

Symmetric Multivariate and Related Distributions

Author: Kai Wang Fang
Publisher: CRC Press
ISBN: 1351093940
Format: PDF, ePub
Download Now
Since the publication of the by now classical Johnson and Kotz Continuous Multivariate Distributions (Wiley, 1972) there have been substantial developments in multivariate distribution theory especially in the area of non-normal symmetric multivariate distributions. The book by Fang, Kotz and Ng summarizes these developments in a manner which is accessible to a reader with only limited background (advanced real-analysis calculus, linear algebra and elementary matrix calculus). Many of the results in this field are due to Kai-Tai Fang and his associates and appeared in Chinese publications only. A thorough literature search was conducted and the book represents the latest work - as of 1988 - in this rapidly developing field of multivariate distributions. The authors are experts in statistical distribution theory.

An Introduction to Regression Graphics

Author: R. Dennis Cook
Publisher: John Wiley & Sons
ISBN: 0470317701
Format: PDF, Mobi
Download Now
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Advanced Multivariate Statistics with Matrices

Author: Tõnu Kollo
Publisher: Springer Science & Business Media
ISBN: 1402034199
Format: PDF, Docs
Download Now
The book presents important tools and techniques for treating problems in m- ern multivariate statistics in a systematic way. The ambition is to indicate new directions as well as to present the classical part of multivariate statistical analysis in this framework. The book has been written for graduate students and statis- cians who are not afraid of matrix formalism. The goal is to provide them with a powerful toolkit for their research and to give necessary background and deeper knowledge for further studies in di?erent areas of multivariate statistics. It can also be useful for researchers in applied mathematics and for people working on data analysis and data mining who can ?nd useful methods and ideas for solving their problems. Ithasbeendesignedasatextbookforatwosemestergraduatecourseonmultiva- ate statistics. Such a course has been held at the Swedish Agricultural University in 2001/02. On the other hand, it can be used as material for series of shorter courses. In fact, Chapters 1 and 2 have been used for a graduate course ”Matrices in Statistics” at University of Tartu for the last few years, and Chapters 2 and 3 formed the material for the graduate course ”Multivariate Asymptotic Statistics” in spring 2002. An advanced course ”Multivariate Linear Models” may be based on Chapter 4. A lot of literature is available on multivariate statistical analysis written for di?- ent purposes and for people with di?erent interests, background and knowledge.

Robustness in Econometrics

Author: Vladik Kreinovich
Publisher: Springer
ISBN: 3319507427
Format: PDF
Download Now
This book presents recent research on robustness in econometrics. Robust data processing techniques – i.e., techniques that yield results minimally affected by outliers – and their applications to real-life economic and financial situations are the main focus of this book. The book also discusses applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that uses mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. In day-by-day data, we often encounter outliers that do not reflect the long-term economic trends, e.g., unexpected and abrupt fluctuations. As such, it is important to develop robust data processing techniques that can accommodate these fluctuations.

Introduction to Statistical Thought

Author: Michael Lavine
Publisher: Orange Groove Books
ISBN: 9781616100483
Format: PDF, ePub, Docs
Download Now
This free PDF textbook is intended as an upper level undergraduate or introductory graduate textbook in statistical thinking. It is best suited to students with a good knowledge of calculus and the ability to think abstractly. The focus of the text is the ideas that statisticians care about as opposed to technical details of how to put those ideas into practice. Another unusual aspect is the use of statistical software as a pedagogical tool. That is, instead of viewing the computer merely as a convenient and accurate calculating device, the book uses computer calculation and simulation as another way of explaining and helping readers understand the underlying concepts. The book is written with the statistical language R embedded throughout. R software and accompanying manuals are available for free download from http: //www.r-project.or