Theoretical and Applied Aerodynamics

Author: J. J. Chattot
Publisher: Springer
ISBN: 9401798257
Format: PDF, Mobi
Download Now
This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and hypersonic (rotational) flows. A unique feature of the book is its ten self-tests and their solutions as well as an appendix on special techniques of functions of complex variables, method of characteristics and conservation laws and shock waves. The book is the culmination of two courses taught every year by the two authors for the last two decades to seniors and first-year graduate students of aerospace engineering at UC Davis.

Optimization Theory with Applications

Author: Donald A. Pierre
Publisher: Courier Corporation
ISBN: 0486136957
Format: PDF, ePub
Download Now
Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.

Godunov Methods

Author: E.F. Toro
Publisher: Springer Science & Business Media
ISBN: 9780306466014
Format: PDF, Docs
Download Now
This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford, in October 1999, to commemorate the 70th birthday of the Russian mathematician Sergei K. Godunov. The central theme of this book is numerical methods for hyperbolic conservation laws following Godunov's key ideas contained in his celebrated paper of 1959. Hyperbolic conservation laws play a central role in mathematical modelling in several distinct disciplines of science and technology. Application areas include compressible, single (and multiple) fluid dynamics, shock waves, meteorology, elasticity, magnetohydrodynamics, relativity, and many others. The successes in the design and application of new and improved numerical methods of the Godunov type for hyperbolic conservation laws in the last twenty years have made a dramatic impact in these application areas. The 97 papers cover a very wide range of topics, such as design and analysis of numerical schemes, applications to compressible and incompressible fluid dynamics, multi-phase flows, combustion problems, astrophysics, environmental fluid dynamics, and detonation waves. This book will be a reference book on the subject of numerical methods for hyperbolic partial differential equations for many years to come. All contributions are self-contained but do contain a review element. There is a key paper by Peter Sweby in which a general overview of Godunov methods is given. This contribution is particularly suitable for beginners on the subject. This book is unique: it contains virtually everything concerned with Godunov-type methods for conservation laws. As such it will be of particular interest to academics (applied mathematicians, numerical analysts, engineers, environmental scientists, physicists, and astrophysicists) involved in research on numerical methods for partial differential equations; scientists and engineers concerned with new numerical methods and applications to scientific and engineering problems e.g., mechanical engineers, aeronautical engineers, meteorologists; and academics involved in teaching numerical methods for partial differential equations at the postgraduate level.

Singular Integral Equations and Discrete Vortices

Author: Ivan K. Lifanov
Publisher: VSP
ISBN: 9789067642071
Format: PDF, ePub, Mobi
Download Now
This monograph is divided into five parts and opens with elements of the theory of singular integral equation solutions in the class of absolutely integrable and non-integrable functions. The second part deals with elements of potential theory for the Helmholtz equation, especially with the reduction of Dirichlet and Neumann problems for Laplace and Helmholtz equations to singular integral equations. Part three contains methods of calculation for different one-dimensional and two-dimensional singular integrals. In this part, quadrature formulas of discrete vortex pair type in the plane case and closed vortex frame type in the spatial case for singular integrals are described for the first time. These quadrature formulas are applied to numerical solutions of singular integral equations of the 1st and 2nd kind with constant and variable coefficients, in part four of the book. Finally, discrete mathematical models of some problems in aerodynamics, electrodynamics and elasticity theory are given.

Godunov Methods

Author: E.F. Toro
Publisher: Springer Science & Business Media
ISBN: 1461506638
Format: PDF, Docs
Download Now
This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford in October 1999, to commemo rate the 70th birthday of the Russian mathematician Sergei K. Godunov. The meeting enjoyed the participation of 140 scientists from 20 countries; one of the participants commented: everyone is here, meaning that virtu ally everybody who had made a significant contribution to the general area of numerical methods for hyperbolic conservation laws, along the lines first proposed by Godunov in the fifties, was present at the meeting. Sadly, there were important absentees, who due to personal circumstance could not at tend this very exciting gathering. The central theme o{ the meeting, and of this book, was numerical methods for hyperbolic conservation laws fol lowing Godunov's key ideas contained in his celebrated paper of 1959. But Godunov's contributions to science are not restricted to Godunov's method.

Method of Discrete Vortices

Author: S. M. Belotserkovsky
Publisher: CRC Press
ISBN: 9780849393075
Format: PDF
Download Now
Method of Discrete Vortices presents a mathematical substantiation and in-depth description of numerical methods for solving singular integral equations with one-dimensional and multiple Cauchy integrals. The book also presents the fundamentals of the theory of singular equations and numerical methods as applied to solving problems in such branches of mechanics as aerodynamics, elasticity, and electrodynamics.

Low Speed Aerodynamics

Author: Joseph Katz
Publisher: Cambridge University Press
ISBN: 9780521665520
Format: PDF, Mobi
Download Now
A treatment of low-speed aerodynamics, covering both theory and computational techniques, first published in 2001.