Theoretical Numerical Analysis

Author: Kendall Atkinson
Publisher: Springer Science & Business Media
ISBN: 1441904581
Format: PDF, ePub, Docs
Download Now
This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solution, numerical methods for solving integral equations of the second kind, and boundary integral equations for planar regions. The presentation of each topic is meant to be an introduction with certain degree of depth. Comprehensive references on a particular topic are listed at the end of each chapter for further reading and study. Because of the relevance in solving real world problems, multivariable polynomials are playing an ever more important role in research and applications. In this third editon, a new chapter on this topic has been included and some major changes are made on two chapters from the previous edition. In addition, there are numerous minor changes throughout the entire text and new exercises are added. Review of earlier edition: "...the book is clearly written, quite pleasant to read, and contains a lot of important material; and the authors have done an excellent job at balancing theoretical developments, interesting examples and exercises, numerical experiments, and bibliographical references." R. Glowinski, SIAM Review, 2003

Analysis for Applied Mathematics

Author: Ward Cheney
Publisher: Springer Science & Business Media
ISBN: 9780387952796
Format: PDF, ePub
Download Now
This book evolved from a course at our university for beginning graduate stu dents in mathematics-particularly students who intended to specialize in ap plied mathematics. The content of the course made it attractive to other math ematics students and to graduate students from other disciplines such as en gineering, physics, and computer science. Since the course was designed for two semesters duration, many topics could be included and dealt with in de tail. Chapters 1 through 6 reflect roughly the actual nature of the course, as it was taught over a number of years. The content of the course was dictated by a syllabus governing our preliminary Ph. D. examinations in the subject of ap plied mathematics. That syllabus, in turn, expressed a consensus of the faculty members involved in the applied mathematics program within our department. The text in its present manifestation is my interpretation of that syllabus: my colleagues are blameless for whatever flaws are present and for any inadvertent deviations from the syllabus. The book contains two additional chapters having important material not included in the course: Chapter 8, on measure and integration, is for the ben efit of readers who want a concise presentation of that subject, and Chapter 7 contains some topics closely allied, but peripheral, to the principal thrust of the course. This arrangement of the material deserves some explanation.

Differential and Difference Equations

Author: Leonard C. Maximon
Publisher: Springer
ISBN: 3319297368
Format: PDF, ePub, Mobi
Download Now
This book, intended for researchers and graduate students in physics, applied mathematics and engineering, presents a detailed comparison of the important methods of solution for linear differential and difference equations - variation of constants, reduction of order, Laplace transforms and generating functions - bringing out the similarities as well as the significant differences in the respective analyses. Equations of arbitrary order are studied, followed by a detailed analysis for equations of first and second order. Equations with polynomial coefficients are considered and explicit solutions for equations with linear coefficients are given, showing significant differences in the functional form of solutions of differential equations from those of difference equations. An alternative method of solution involving transformation of both the dependent and independent variables is given for both differential and difference equations. A comprehensive, detailed treatment of Green’s functions and the associated initial and boundary conditions is presented for differential and difference equations of both arbitrary and second order. A dictionary of difference equations with polynomial coefficients provides a unique compilation of second order difference equations obeyed by the special functions of mathematical physics. Appendices augmenting the text include, in particular, a proof of Cramer’s rule, a detailed consideration of the role of the superposition principal in the Green’s function, and a derivation of the inverse of Laplace transforms and generating functions of particular use in the solution of second order linear differential and difference equations with linear coefficients.

Partial Differential Equations Modeling Analysis and Numerical Approximation

Author: Hervé Le Dret
Publisher: Birkhäuser
ISBN: 3319270672
Format: PDF, ePub, Mobi
Download Now
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.

Elementary Functional Analysis

Author: Barbara MacCluer
Publisher: Springer Science & Business Media
ISBN: 0387855297
Format: PDF, ePub, Mobi
Download Now
Functional analysis arose in the early twentieth century and gradually, conquering one stronghold after another, became a nearly universal mathematical doctrine, not merely a new area of mathematics, but a new mathematical world view. Its appearance was the inevitable consequence of the evolution of all of nineteenth-century mathematics, in particular classical analysis and mathematical physics. Its original basis was formed by Cantor’s theory of sets and linear algebra. Its existence answered the question of how to state general principles of a broadly interpreted analysis in a way suitable for the most diverse situations. A.M. Vershik ([45], p. 438). This text evolved from the content of a one semester introductory course in fu- tional analysis that I have taught a number of times since 1996 at the University of Virginia. My students have included ?rst and second year graduate students prep- ing for thesis work in analysis, algebra, or topology, graduate students in various departments in the School of Engineering and Applied Science, and several und- graduate mathematics or physics majors. After a ?rst draft of the manuscript was completed, it was also used for an independent reading course for several und- graduates preparing for graduate school.

Accuracy and Stability of Numerical Algorithms

Author: Nicholas J. Higham
Publisher: SIAM
ISBN: 9780898718027
Format: PDF, ePub, Mobi
Download Now
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.

Numerical Methods for Engineers

Author: Steven Chapra
Publisher: McGraw-Hill Higher Education
ISBN: 0077492161
Format: PDF, Docs
Download Now
The seventh edition of Chapra and Canale's Numerical Methods for Engineers retains the instructional techniques that have made the text so successful. Chapra and Canale's unique approach opens each part of the text with sections called “Motivation,“ “Mathematical Background,” and “Orientation” Each part closes with an “Epilogue” containing “Trade-Offs,” “Important Relationships and Formulas,” and “Advanced Methods and Additional References.” Much more than a summary, the Epilogue deepens understanding of what has been learned and provides a peek into more advanced methods. Helpful separate Appendices. “Getting Started with MATLAB” and “Getting Started with Mathcad” which make excellent references.

Introductory Functional Analysis

Author: B.D. Reddy
Publisher: Springer Science & Business Media
ISBN: 9780387983073
Format: PDF, ePub, Mobi
Download Now
The book is aimed particularly at students and researchers who do not have the traditional prerequisites (for example, real analysis) for a first course in functional analysis, and are interested in the applications of this subject to areas such as partial differential equations and the finite element method. The selection, presentation and organization of material are guided by the principle that abstract concepts should be conveyed in a carefully structured and well-placed manner, in order to make these readily accessible to the target readership.

The R Book

Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 1118448960
Format: PDF
Download Now
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)