Theory of Magnetism

Author: Hung T Diep
Publisher: World Scientific Publishing Company
ISBN: 9814569968
Format: PDF, ePub, Mobi
Download Now
The book is intended for graduate students and researchers who wish to master the main properties of magnetic materials in the bulk state and at the nanometric scale such as for thin films and multilayers. This textbook provides the theories and methods of simulation to study and to understand these properties in an explicit manner. In the first part of the book, the quantum theory of magnetism is presented while the second part of the book is devoted to the application of the theory of magnetism to surface physics. Numerous examples covering typical cases in ferromagnets, antiferromagnets, ferrimagnets, helimagnets, and frustrated spin systems are all illustrated. Fundamental surface effects are shown and discussed. Lastly, the spin transport is described — in which the basic formulation of the Boltzmann's equation is recalled — and the recent methods of Monte Carlo simulation to deal with the spin resistivity are explained. This book contains a large number of detailed solutions for the problems given in each chapter to help readers discover new related phenomena and applications, as well as an appendix on elements of statistical physics included at the end to make the book self-contained.

Theory of Magnetism

Author: H. T. Diep
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814569941
Format: PDF, Docs
Download Now
The book is intended for graduate students and researchers who wish to master the main properties of magnetic materials in the bulk state and at the nanometric scale such as for thin films and multilayers. This textbook provides the theories and methods of simulation to study and to understand these properties in an explicit manner. In the first part of the book, the quantum theory of magnetism is presented while the second part of the book is devoted to the application of the theory of magnetism to surface physics. Numerous examples covering typical cases in ferromagnets, antiferromagnets, ferrimagnets, helimagnets, and frustrated spin systems are all illustrated. Fundamental surface effects are shown and discussed. Lastly, the spin transport is described in which the basic formulation of the Boltzmann's equation is recalled and the recent methods of Monte Carlo simulation to deal with the spin resistivity are explained. This book contains a large number of detailed solutions for the problems given in each chapter to help readers discover new related phenomena and applications, as well as an appendix on elements of statistical physics included at the end to make the book self-contained.

Statistical Physics

Author: Hung T Diep
Publisher: World Scientific Publishing Company
ISBN: 9814696277
Format: PDF
Download Now
The aim of this book is to provide the fundamentals of statistical physics and its application to condensed matter. The combination of statistical mechanics and quantum mechanics has provided an understanding of properties of matter leading to spectacular technological innovations and discoveries in condensed matter which have radically changed our daily life. The book gives the steps to follow to understand fundamental theories and to apply these to real materials.

Electronic Structure Calculations for Solids and Molecules

Author: Jorge Kohanoff
Publisher: Cambridge University Press
ISBN: 1139453483
Format: PDF
Download Now
Electronic structure problems are studied in condensed matter physics and theoretical chemistry to provide important insights into the properties of matter. This 2006 graduate textbook describes the main theoretical approaches and computational techniques, from the simplest approximations to the most sophisticated methods. It starts with a detailed description of the various theoretical approaches to calculating the electronic structure of solids and molecules, including density-functional theory and chemical methods based on Hartree-Fock theory. The basic approximations are thoroughly discussed, and an in-depth overview of recent advances and alternative approaches in DFT is given. The second part discusses the different practical methods used to solve the electronic structure problem computationally, for both DFT and Hartree-Fock approaches. Adopting a unique and open approach, this textbook is aimed at graduate students in physics and chemistry, and is intended to improve communication between these communities. It also serves as a reference for researchers entering the field.