Theory of Shells

Author: Philippe G. Ciarlet
Publisher: Elsevier
ISBN: 9780080511238
Format: PDF, Mobi
Download Now
The objective of Volume III is to lay down the proper mathematical foundations of the two-dimensional theory of shells. To this end, it provides, without any recourse to any a priori assumptions of a geometrical or mechanical nature, a mathematical justification of two-dimensional nonlinear and linear shell theories, by means of asymptotic methods, with the thickness as the "small" parameter.

Theory of Shells

Author: Philippe G. Ciarlet
Publisher: North Holland
ISBN: 9780444828910
Format: PDF, ePub, Docs
Download Now
The objective of Volume III is to lay down the proper mathematical foundations of the two-dimensional theory of shells. To this end, it provides, without any recourse to any a priori assumptions of a geometrical or mechanical nature, a mathematical justification of two-dimensional nonlinear and linear shell theories, by means of asymptotic methods, with the thickness as the "small" parameter.

Mathematical Elasticity

Author:
Publisher: Elsevier
ISBN: 9780080535913
Format: PDF, Mobi
Download Now
The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Kármán equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.

An Introduction to Differential Geometry with Applications to Elasticity

Author: Philippe G. Ciarlet
Publisher: Springer Science & Business Media
ISBN: 1402042485
Format: PDF, ePub, Docs
Download Now
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].

Linear Elastic Theory of Thin Shells

Author: J. E. Gibson
Publisher: Elsevier
ISBN: 1483180735
Format: PDF, Kindle
Download Now
Linear Elastic Theory of Thin Shells presents membrane and bending theories for open and closed cylindrical shells and shells of arbitrary shape. This book aims to develop the analysis through membrane theory to bending theory for shells and to limit the type of mathematics used. Organized into eight chapters, this book begins with an overview of the solid material enclosed between two closely spaced doubly curved surfaces. This text then examines the five stress resultants for closed cylindrical shell. Other chapters consider the theoretical stresses that are closely related to the actual stresses determined experimentally in practice. This book discusses as well the numerical analysis of more complicated shell structures. The final chapter deals with the correlation between experimental and theoretical stresses in shells. This book is intended to be suitable for final year engineering and post-graduate students. Design and consulting engineers will also find this book extremely useful.

The Nonlinear Theory of Elastic Shells

Author: A. Libai
Publisher: Cambridge University Press
ISBN: 9780521019767
Format: PDF, ePub
Download Now
Clear, thorough explanation of the nonlinear behaviour of shells, for researchers and graduate students.

Introduction to Numerical Linear Algebra and Optimisation

Author: Philippe G. Ciarlet
Publisher: Cambridge University Press
ISBN: 9780521339841
Format: PDF, ePub, Mobi
Download Now
Based on courses taught to advanced undergraduate students, this book offers a broad introduction to the methods of numerical linear algebra and optimization. The prerequisites are familiarity with the basic properties of matrices, finite-dimensional vector spaces and advanced calculus, and some exposure to fundamental notions from functional analysis. The book is divided into two parts. The first part deals with numerical linear algebra (numerical analysis of matrices, direct and indirect methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimizations (general algorithms, linear and nonlinear programming). Summaries of basic mathematics are provided, proof of theorems are complete yet kept as simple as possible, applications from physics and mechanics are discussed, a great many exercises are included, and there is a useful guide to further reading.