Theory of Stochastic Differential Equations with Jumps and Applications

Author: Rong SITU
Publisher: Springer Science & Business Media
ISBN: 0387251758
Format: PDF, Kindle
Download Now
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.

Fluctuations of L vy Processes with Applications

Author: Andreas Kyprianou
Publisher: Springer Science & Business Media
ISBN: 3642376320
Format: PDF, ePub, Mobi
Download Now
Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises.

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Author: Eckhard Platen
Publisher: Springer Science & Business Media
ISBN: 364213694X
Format: PDF
Download Now
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.

Numerical Solution of Stochastic Differential Equations

Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Format: PDF, ePub, Mobi
Download Now
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Stochastic Partial Differential Equations

Author: H. Holden
Publisher: Springer Science & Business Media
ISBN: 1468492152
Format: PDF, Kindle
Download Now
This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th,~se SPDEs explicitly, or at least provide algorithms or approximations for the solutions.

Reflecting Stochastic Differential Equations with Jumps and Applications

Author: Situ Rong
Publisher: CRC Press
ISBN: 9781584881254
Format: PDF, Mobi
Download Now
Many important physical variables satisfy certain dynamic evolution systems and can take only non-negative values. Therefore, one can study such variables by studying these dynamic systems. One can put some conditions on the coefficients to ensure non-negative values in deterministic cases. However, as a random process disturbs the system, the components of solutions to stochastic differential equations (SDE) can keep changing between arbitrary large positive and negative values-even in the simplest case. To overcome this difficulty, the author examines the reflecting stochastic differential equation (RSDE) with the coordinate planes as its boundary-or with a more general boundary. Reflecting Stochastic Differential Equations with Jumps and Applications systematically studies the general theory and applications of these equations. In particular, the author examines the existence, uniqueness, comparison, convergence, and stability of strong solutions to cases where the RSDE has discontinuous coefficients-with greater than linear growth-that may include jump reflection. He derives the nonlinear filtering and Zakai equations, the Maximum Principle for stochastic optimal control, and the necessary and sufficient conditions for the existence of optimal control. Most of the material presented in this book is new, including much new work by the author concerning SDEs both with and without reflection. Much of it appears here for the first time. With the application of RSDEs to various real-life problems, such as the stochastic population and neurophysiological control problems-both addressed in the text-scientists dealing with stochastic dynamic systems will find this an interesting and useful work.

Stochastic Calculus

Author: Mircea Grigoriu
Publisher: Springer Science & Business Media
ISBN: 9780817642426
Format: PDF, ePub, Docs
Download Now
"This self-contained text may be used for several graduate courses and as an important reference resource for applied scientists interested in analytical and numerical methods for solving stochastic problems."--BOOK JACKET.

Statistical Methods for Stochastic Differential Equations

Author: Mathieu Kessler
Publisher: CRC Press
ISBN: 1439849765
Format: PDF, ePub, Mobi
Download Now
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation based on likelihood methods, estimating functions, and simulation techniques. Two chapters are devoted to high-frequency data. Multivariate models are also considered, including partially observed systems, asynchronous sampling, tests for simultaneous jumps, and multiscale diffusions. Statistical Methods for Stochastic Differential Equations is useful to the theoretical statistician and the probabilist who works in or intends to work in the field, as well as to the applied statistician or financial econometrician who needs the methods to analyze biological or financial time series.

Mathematical Methods in Robust Control of Linear Stochastic Systems

Author: Vasile Dragan
Publisher: Springer Science & Business Media
ISBN: 1461486637
Format: PDF, Mobi
Download Now
This second edition of Mathematical Methods in the Robust Control of Linear Stochastic Systems includes a large number of recent results in the control of linear stochastic systems. More specifically, the new results presented are: - A unified and abstract framework for Riccati type equations arising in the stochastic control - Stability and control problems for systems perturbed by homogeneous Markov processes with infinite number of states - Mixed H2 / H∞ control problem and numerical procedures - Linear differential equations with positive evolution on ordered Banach spaces with applications for stochastic systems including both multiplicative white noise and Markovian jumps represented by a Markov chain with countable infinite set of states - Kalman filtering for stochastic systems subject both to state dependent noise and Markovian jumps - H∞ reduced order filters for stochastic systems The book will appeal to graduate students, researchers in advanced control engineering, finance, mathematical systems theory, applied probability and stochastic processes, and numerical analysis. From Reviews of the First Edition: This book is concerned with robust control of stochastic systems. One of the main features is its coverage of jump Markovian systems. ... Overall, this book presents results taking into consideration both white noise and Markov chain perturbations. It is clearly written and should be useful for people working in applied mathematics and in control and systems theory. The references cited provide further reading sources. (George Yin, Mathematical Reviews, Issue 2007 m) This book considers linear time varying stochastic systems, subjected to white noise disturbances and system parameter Markovian jumping, in the context of optimal control ... robust stabilization, and disturbance attenuation. ... The material presented in the book is organized in seven chapters. ... The book is very well written and organized. ... is a valuable reference for all researchers and graduate students in applied mathematics and control engineering interested in linear stochastic time varying control systems with Markovian parameter jumping and white noise disturbances. (Zoran Gajic, SIAM Review, Vol. 49 (3), 2007)