Toward Detonation Theory

Author: Anatoly N. Dremin
Publisher: Springer Science & Business Media
ISBN: 9780387986722
Format: PDF, Mobi
Download Now
It is known that the Chapman-Jouguet theory of detonation is based on the assumption of an instantaneous and complete transformation of explosives into detonation products in the wave front. Therefore, one should not expect from the theory any interpretations of the detonation limits, such as shock initiation of det onation and kinetic instability and propagation (failure diameter). The Zeldovich-Von Neuman-Doring (ZND) theory of detonation appeared, in fact, as a response to the need for a theory capable of interpreting such limits, and the ZND detonation theory gave qualitative interpretations to the detonation limits. These interpretations were based essentially on the theoretical notion that the mechanism of explosives transformation at detonation is a combustion of a layer of finite thickness of shock-compressed explosive behind the wave shock front with the velocity of the front. However, some experimental findings turned out to be inconsistent with the the ory. A very small change of homogeneous (liquid) explosives detonation velocity with explosive charge diameter near the rather sizable failure diameter is one of the findings. The elucidation of the nature of this finding has led to the discovery of a new phenomenon. This phenomenon has come to be known as the breakdown (BD) of the explosive self-ignition behind the front of shock waves under the effect of rarefaction waves.

Explosive Effects and Applications

Author: Jonas A. Zukas
Publisher: Springer Science & Business Media
ISBN: 1461205891
Format: PDF, Docs
Download Now
This is a broad-based text on the fundamentals of explosive behavior and the application of explosives in civil engineering, industrial processes, aerospace applications, and military uses.

High Pressure Shock Compression of Solids VII

Author: Vladimir E. Fortov
Publisher: Springer Science & Business Media
ISBN: 1475740484
Format: PDF, Docs
Download Now
Presenting some of the most recent results of Russian research into shock compression, as well as historical overviews of the Russian research programs into shock compression, this volume will provide Western researchers with many novel ideas and points of view. The chapters in this volume are written by leading Russian specialists various fields of high-pressure physics and form accounts of the main researches on the behavior of matter under shock-wave interaction. The experimental portions contain results of studies of shock compression of metals to high and ultra-high pressure, shock initiation of polymorphic transformations, strength, fracture and fragmentation under shock compression, and detonation of condensed explosives. There are also chapters on theoretical investigations of shock-wave compression and plasma states in regimes of high-pressure and high- temperature. The topics of the book are of interest to scientists and engineers concerned with questions of material behavior under impulsive loading and to the equation of state of matter. Application is to questions of high-speed impact, inner composition of planets, verification of model representations of material behavior under extreme 1oading conditions, syntheses of new materials, development of new technologies for material processing, etc. Russian research differs from much of the Western work in that it has traditionally been wider-ranging and more directed to extremes of response than to precise characterization of specific materials and effects. Western scientists could expect to benefit from the perspective gained from close knowledge of the Russian work.

Test Methods for Explosives

Author: Muhamed Suceska
Publisher: Springer Science & Business Media
ISBN: 1461207975
Format: PDF, ePub
Download Now
It seems that there is no book that treats the measurement of the physical pa rameters of explosives as its only subject, although limited information is avail able in a number of books. Therefore, I have tried to bridge this gap in the lit erature with this book. A large number of various physical parameters have to be determined ex perimentally in order to test or characterise an explosive. Various physical principles have been applied for such measurements. Accordingly, a large number of different experimental methods exist, as well as various testing appa ratuses and procedures. On the other hand, great progress has been made recently in the study of detonation phenomena. New measuring techniques can assess extremely short processes to below nanoseconds scale. They make it possible to determine im portant parameters in detonation physics. I have made a great attempt to cover the available literature data on the subject. Because it would be a highly demanding task to include in a single volume all the methods that are in use by various testing agencies, I have tried to give primarily the principles for determination of individual physical pa rameters of explosives by different measuring methods as well as data treatment procedures.

Thermo Gas Dynamics of Hydrogen Combustion and Explosion

Author: Boris E. Gelfand
Publisher: Springer Science & Business Media
ISBN: 3642253512
Format: PDF, ePub, Docs
Download Now
The potential of hydrogen as an important future energy source has generated fresh interest in the study of hydrogenous gas mixtures. Indeed, both its high caloricity and reactivity are unique properties, the latter underscoring safety considerations when handling such mixtures. The present monograph is devoted to the various aspects of hydrogen combustion and explosion processes. In addition to theoretical and phenomenological considerations, this work also collates the results of many experiments from less well known sources. The text reviews the literature in this respect, thereby providing valuable information about the thermo-gas-dynamical parameters of combustion processes for selected experimental settings in a range of scientific and industrial applications.

Shock Wave Reflection Phenomena

Author: Gabi Ben-Dor
Publisher: Springer Science & Business Media
ISBN: 3540713824
Format: PDF, Docs
Download Now
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.

Fundamentals of Shock Wave Propagation in Solids

Author: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 3540745688
Format: PDF, Mobi
Download Now
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.

Shock Wave Phenomena and the Properties of Condensed Matter

Author: Gennady I. Kanel
Publisher: Springer Science & Business Media
ISBN: 1475742827
Format: PDF, ePub, Docs
Download Now
One of the main goals of investigations of shock-wave phenomena in condensed matter is to develop methods for predicting effects of explosions, high-velocity collisions, and other kinds of intense dynamic loading of materials and structures. Based on the results of international research conducted over the past 30 years, this book is addressed not only to experts in shock-wave physics, but also to interested representatives from adjacent fields of activity and to students who seek an introduction to the current issues.

Static Compression of Energetic Materials

Author: Suhithi M. Peiris
Publisher: Springer Science & Business Media
ISBN: 3540681515
Format: PDF, ePub
Download Now
Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.

Explosion Blast Response of Composites

Author: Adrian P. Mouritz
Publisher: Woodhead Publishing
ISBN: 0081020937
Format: PDF, Kindle
Download Now
Explosion Blast Response of Composites contains key information on the effects of explosions, shock waves, and detonation products (e.g. fragments, shrapnel) on the deformation and damage to composites. The book considers the blast response of laminates and sandwich composites, along with blast mitigation of composites (including coating systems and energy absorbing materials). Broken down under the following key themes: Introduction to explosive blast response of composites, Air explosion blast response of composites, Underwater explosion blast response of composites, and High strain rate and dynamic properties of composites, the book deals with an important and contemporary topic due to the extensive use of composites in applications where explosive blasts are an ever-present threat, such as military aircraft, armoured vehicles, naval ships and submarines, body armour, and other defense applications. In addition, the growing use of IEDs and other types of bombs used by terrorists to attack civilian and military targets highlights the need for this book. Many terrorist attacks occur in subways, trains, buses, aircraft, buildings, and other civil infrastructure made of composite materials. Designers, engineers and terrorist experts need the essential information to protect civilians, military personnel, and assets from explosive blasts. Focuses on key aspects, including both modeling, analysis, and experimental work Written by leading international experts from academia, defense agencies, and other organizations Timely book due to the extensive use of composites in areas where explosive blasts are an ever-present threat in military applications