Transient Control of Gasoline Engines

Author: Tielong Shen
Publisher: CRC Press
ISBN: 1466584270
Format: PDF, ePub, Mobi
Download Now
Transient Control of Gasoline Engines drives to move progress forward. A stimulating examination of car electronics and digital processing technology, this book chronicles significant advances that have occurred over the past 20 years (including the change from combustion engines to computerized machines) and presents new and exciting ways to enhance engine efficiency using real-time control technology. Dedicated to improving the emissions of automotive powertrains, it provides an introduction to modeling, control design, and test bench, and explains the fundamentals of modeling and control design for engine transient operation. It also presents a model-based transient control design methodology from the perspective of the dynamical system control theory. Written with graduate students in mind, this book: Addresses issues relevant to transient operation, cycle-to-cycle transient, and cylinder-to-cylinder balancing Examines the real-time optimizing control problem (receding horizon optimization, for torque tracking control and speed control) Covers three benchmark problems related to the modeling and control of gasoline engines: engine start control, identification of the engines, and the boundary modeling and extreme condition control Transient Control of Gasoline Engines describes the behavior of engine dynamics operated at transient mode as a dynamical system and employs the advanced control theory to design a real-time control strategy that can be used to improve efficiency and emission performance overall. Geared toward graduate students, this book also serves as a trusted source for researchers and practitioners focused on engine and engine electronics design, car electronics, and control engineering.

Knocking in Gasoline Engines

Author: Michael Günther
Publisher: Springer
ISBN: 3319697609
Format: PDF, Kindle
Download Now
The book includes the papers presented at the conference discussing approaches to prevent or reliably control knocking and other irregular combustion events. The majority of today’s highly efficient gasoline engines utilize downsizing. High mean pressures produce increased knocking, which frequently results in a reduction in the compression ratio at high specific powers. Beyond this, the phenomenon of pre-ignition has been linked to the rise in specific power in gasoline engines for many years. Charge-diluted concepts with high compression cause extreme knocking, potentially leading to catastrophic failure. The introduction of RDE legislation this year will further grow the requirements for combustion process development, as residual gas scavenging and enrichment to improve the knock limit will be legally restricted despite no relaxation of the need to reach the main center of heat release as early as possible. New solutions in thermodynamics and control engineering are urgently needed to further increase the efficiency of gasoline engines.

11th International Conference on Turbochargers and Turbocharging

Author: IMechE.
Publisher: Elsevier
ISBN: 0081000340
Format: PDF, ePub, Mobi
Download Now
The future market forces and environmental considerations in the passenger car and commercial vehicle sector mean more stringent engine downsizing is far more prevalent. Therefore, novel systems are required to provide boosting solutions including hybrid, electric-motor and exhaust waste energy recovery systems for high efficiency, response, reliability, durability and compactness. The current emission legislations and environmental trends for reducing CO2 and fuel consumption are the major market forces in the land and marine transport industries. The internal combustion engine is the key product and downsizing, efficiency and economy are the driving forces for development for both spark ignition (SI) and compression ignition (CI) engines in both markets. Future market forces and environmental considerations for transportation, specifically in the passenger car, commercial vehicle and the marine sectors mean more stringent engine downsizing. This international conference is the latest in the highly successful and prestigious series held regularly since 1978. These proceedings from the InstitutionOCOs highly successful and prestigious series address current and novel aspects of turbocharging systems design, boosting solutions for engine downsizing and improvements in efficiency, and present the latest research and development in this growing and innovative area. Focuses on boosting solutions including hybrid, electric-motor and exhaust waste energy recovery systemsExplores the current need for high efficiency, reliability, durability and compactness in recovery systemsExamines what new systems developments are underway"

Diesel Engine System Design

Author: Qianfan Xin
Publisher: Elsevier
ISBN: 0857090836
Format: PDF, Kindle
Download Now
Diesel Engine System Design links everything diesel engineers need to know about engine performance and system design in order for them to master all the essential topics quickly and to solve practical design problems. Based on the author's unique experience in the field, it enables engineers to come up with an appropriate specification at an early stage in the product development cycle. Links everything diesel engineers need to know about engine performance and system design featuring essential topics and techniques to solve practical design problems Focuses on engine performance and system integration including important approaches for modelling and analysis Explores fundamental concepts and generic techniques in diesel engine system design incorporating durability, reliability and optimization theories

Charging the Internal Combustion Engine

Author: Hermann Hiereth
Publisher: Springer Science & Business Media
ISBN: 3211471138
Format: PDF, Kindle
Download Now
This book covers all aspects of supercharging internal combustion engines. It details charging systems and components, the theoretical basic relations between engines and charging systems, as well as layout and evaluation criteria for best interaction. Coverage also describes recent experiences in design and development of supercharging systems, improved graphical presentations, and most advanced calculation and simulation tools.

Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation

Author: Ershi Qi
Publisher: Springer
ISBN: 9462391459
Format: PDF, ePub
Download Now
The 6th International Asia Conference on Industrial Engineering and Management Innovation is sponsored by the Chinese Industrial Engineering Institution and organized by Tianjin University. The conference aims to share and disseminate information on the most recent and relevant researches, theories and practices in industrial and system engineering to promote their development and application in university and enterprises.

Modeling and Control of Engines and Drivelines

Author: Lars Eriksson
Publisher: John Wiley & Sons
ISBN: 1118536193
Format: PDF, Docs
Download Now
Control systems have come to play an important role in the performance of modern vehicles with regards to meeting goals on low emissions and low fuel consumption. To achieve these goals, modeling, simulation, and analysis have become standard tools for the development of control systems in the automotive industry. Modeling and Control of Engines and Drivelines provides an up-to-date treatment of the topic from a clear perspective of systems engineering and control systems, which are at the core of vehicle design. This book has three main goals. The first is to provide a thorough understanding of component models as building blocks. It has therefore been important to provide measurements from real processes, to explain the underlying physics, to describe the modeling considerations, and to validate the resulting models experimentally. Second, the authors show how the models are used in the current design of control and diagnosis systems. These system designs are never used in isolation, so the third goal is to provide a complete setting for system integration and evaluation, including complete vehicle models together with actual requirements and driving cycle analysis. Key features: Covers signals, systems, and control in modern vehicles Covers the basic dynamics of internal combustion engines and drivelines Provides a set of standard models and includes examples and case studies Covers turbo- and super-charging, and automotive dependability and diagnosis Accompanied by a web site hosting example models and problems and solutions Modeling and Control of Engines and Drivelines is a comprehensive reference for graduate students and the authors’ close collaboration with the automotive industry ensures that the knowledge and skills that practicing engineers need when analysing and developing new powertrain systems are also covered.