Transient Control of Gasoline Engines

Author: Tielong Shen
Publisher: CRC Press
ISBN: 1466584270
Format: PDF
Download Now
Transient Control of Gasoline Engines drives to move progress forward. A stimulating examination of car electronics and digital processing technology, this book chronicles significant advances that have occurred over the past 20 years (including the change from combustion engines to computerized machines) and presents new and exciting ways to enhance engine efficiency using real-time control technology. Dedicated to improving the emissions of automotive powertrains, it provides an introduction to modeling, control design, and test bench, and explains the fundamentals of modeling and control design for engine transient operation. It also presents a model-based transient control design methodology from the perspective of the dynamical system control theory. Written with graduate students in mind, this book: Addresses issues relevant to transient operation, cycle-to-cycle transient, and cylinder-to-cylinder balancing Examines the real-time optimizing control problem (receding horizon optimization, for torque tracking control and speed control) Covers three benchmark problems related to the modeling and control of gasoline engines: engine start control, identification of the engines, and the boundary modeling and extreme condition control Transient Control of Gasoline Engines describes the behavior of engine dynamics operated at transient mode as a dynamical system and employs the advanced control theory to design a real-time control strategy that can be used to improve efficiency and emission performance overall. Geared toward graduate students, this book also serves as a trusted source for researchers and practitioners focused on engine and engine electronics design, car electronics, and control engineering.

Charging the Internal Combustion Engine

Author: Hermann Hiereth
Publisher: Springer Science & Business Media
ISBN: 3211471138
Format: PDF, ePub, Docs
Download Now
This book covers all aspects of supercharging internal combustion engines. It details charging systems and components, the theoretical basic relations between engines and charging systems, as well as layout and evaluation criteria for best interaction. Coverage also describes recent experiences in design and development of supercharging systems, improved graphical presentations, and most advanced calculation and simulation tools.

Diesel Engine System Design

Author: Qianfan Xin
Publisher: Elsevier
ISBN: 0857090836
Format: PDF, ePub
Download Now
Diesel Engine System Design links everything diesel engineers need to know about engine performance and system design in order for them to master all the essential topics quickly and to solve practical design problems. Based on the author's unique experience in the field, it enables engineers to come up with an appropriate specification at an early stage in the product development cycle. Links everything diesel engineers need to know about engine performance and system design featuring essential topics and techniques to solve practical design problems Focuses on engine performance and system integration including important approaches for modelling and analysis Explores fundamental concepts and generic techniques in diesel engine system design incorporating durability, reliability and optimization theories

Knocking in Gasoline Engines

Author: Michael Günther
Publisher: Springer
ISBN: 3319697609
Format: PDF, Kindle
Download Now
The book includes the papers presented at the conference discussing approaches to prevent or reliably control knocking and other irregular combustion events. The majority of today’s highly efficient gasoline engines utilize downsizing. High mean pressures produce increased knocking, which frequently results in a reduction in the compression ratio at high specific powers. Beyond this, the phenomenon of pre-ignition has been linked to the rise in specific power in gasoline engines for many years. Charge-diluted concepts with high compression cause extreme knocking, potentially leading to catastrophic failure. The introduction of RDE legislation this year will further grow the requirements for combustion process development, as residual gas scavenging and enrichment to improve the knock limit will be legally restricted despite no relaxation of the need to reach the main center of heat release as early as possible. New solutions in thermodynamics and control engineering are urgently needed to further increase the efficiency of gasoline engines.

11th International Conference on Turbochargers and Turbocharging

Author: IMechE.
Publisher: Elsevier
ISBN: 0081000340
Format: PDF, Docs
Download Now
The future market forces and environmental considerations in the passenger car and commercial vehicle sector mean more stringent engine downsizing is far more prevalent. Therefore, novel systems are required to provide boosting solutions including hybrid, electric-motor and exhaust waste energy recovery systems for high efficiency, response, reliability, durability and compactness. The current emission legislations and environmental trends for reducing CO2 and fuel consumption are the major market forces in the land and marine transport industries. The internal combustion engine is the key product and downsizing, efficiency and economy are the driving forces for development for both spark ignition (SI) and compression ignition (CI) engines in both markets. Future market forces and environmental considerations for transportation, specifically in the passenger car, commercial vehicle and the marine sectors mean more stringent engine downsizing. This international conference is the latest in the highly successful and prestigious series held regularly since 1978. These proceedings from the InstitutionOCOs highly successful and prestigious series address current and novel aspects of turbocharging systems design, boosting solutions for engine downsizing and improvements in efficiency, and present the latest research and development in this growing and innovative area. Focuses on boosting solutions including hybrid, electric-motor and exhaust waste energy recovery systemsExplores the current need for high efficiency, reliability, durability and compactness in recovery systemsExamines what new systems developments are underway"

Engine Modeling and Control

Author: Rolf Isermann
Publisher: Springer
ISBN: 3642399347
Format: PDF
Download Now
The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software development - Control of gasoline engines, control of air/fuel, ignition, knock, idle, coolant, adaptive control functions - Control of diesel engines, combustion models, air flow and exhaust recirculation control, combustion-pressure-based control (HCCI), optimization of feedforward and feedback control, smoke limitation and emission control This book is an introduction to electronic engine management with many practical examples, measurements and research results. It is aimed at advanced students of electrical, mechanical, mechatronic and control engineering and at practicing engineers in the field of combustion engine and automotive engineering.

Diesel Engine System Design

Author: Qianfan Xin
Publisher: Elsevier
ISBN: 0857090836
Format: PDF, Kindle
Download Now
Diesel Engine System Design links everything diesel engineers need to know about engine performance and system design in order for them to master all the essential topics quickly and to solve practical design problems. Based on the author's unique experience in the field, it enables engineers to come up with an appropriate specification at an early stage in the product development cycle. Links everything diesel engineers need to know about engine performance and system design featuring essential topics and techniques to solve practical design problems Focuses on engine performance and system integration including important approaches for modelling and analysis Explores fundamental concepts and generic techniques in diesel engine system design incorporating durability, reliability and optimization theories

Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation

Author: Ershi Qi
Publisher: Springer
ISBN: 9462391459
Format: PDF, Kindle
Download Now
The 6th International Asia Conference on Industrial Engineering and Management Innovation is sponsored by the Chinese Industrial Engineering Institution and organized by Tianjin University. The conference aims to share and disseminate information on the most recent and relevant researches, theories and practices in industrial and system engineering to promote their development and application in university and enterprises.

Advanced Direct Injection Combustion Engine Technologies and Development

Author: H Zhao
Publisher: Elsevier
ISBN: 1845697324
Format: PDF, Docs
Download Now
Direct injection enables precise control of the fuel/air mixture so that engines can be tuned for improved power and fuel economy, but ongoing research challenges remain in improving the technology for commercial applications. As fuel prices escalate DI engines are expected to gain in popularity for automotive applications. This important book, in two volumes, reviews the science and technology of different types of DI combustion engines and their fuels. Volume 1 deals with direct injection gasoline and CNG engines, including history and essential principles, approaches to improved fuel economy, design, optimisation, optical techniques and their applications. Reviews key technologies for enhancing direct injection (DI) gasoline engines Examines approaches to improved fuel economy and lower emissions Discusses DI compressed natural gas (CNG) engines and biofuels