Tropical Meteorology

Author: T.N. Krishnamurti
Publisher: Springer Science & Business Media
ISBN: 1461474094
Format: PDF
Download Now
This book is designed as an introductory course in Tropical Meteorology for the graduate or advanced level undergraduate student. The material within can be covered in a one-semester course program. The text starts from the global scale-view of the Tropics, addressing the zonally symmetric and asymmetric features of the tropical circulation. It then goes on to progressively smaller spatial and time scales – from the El Niño Southern Oscillation and the Asian Monsoon, down to tropical waves, hurricanes, sea breezes, and tropical squall lines. The emphasis in most chapters is on the observational aspects of the phenomenon in question, the theories regarding its nature and maintenance, and the approaches to its numerical modeling. The concept of scale interactions is also presented as a way of gaining insight into the generation and redistribution of energy for the maintenance of oscillations of a variety of spatial and temporal scales.

Impact of Climate Change on Water Resources

Author: Komaragiri Srinivasa Raju
Publisher: Springer
ISBN: 9811061106
Format: PDF, ePub, Docs
Download Now
This book gives an overview of various aspects of climate change by integrating global climate models, downscaling approaches, and hydrological models. It also covers themes that help in understanding climate change in a holistic manner. The book includes worked-out examples, revision questions, exercise problems, and case studies, making it relevant for use as a textbook in graduate courses and professional development programs. The book will serve well researchers, students, as well as professionals working in the area of hydroclimatology.

Advances in Meteorology Climatology and Atmospheric Physics

Author: Costas G. Helmis
Publisher: Springer Science & Business Media
ISBN: 3642291724
Format: PDF, ePub, Docs
Download Now
This book essentially comprises the proceedings of the 11th International Conference of Meteorology, Climatology and Atmospheric Physics (COMECAP 2012) that is held in Athens from 30 May to 1 June 2012. The Conference addresses researchers, professionals and students interested in the following topics: Agricultural Meteorology and Climatology, Air Quality, Applied Meteorology and Climatology, Applications of Meteorology in the Energy Sector, Atmospheric Physics and Chemistry, Atmospheric Radiation, Atmospheric Boundary Layer, Biometeorology and Bioclimatology, Climate Dynamics, Climatic Changes, Cloud Physics, Dynamic and Synoptic Μeteorology, Extreme Events, Hydrology and Hydrometeorology, Mesoscale Meteorology, Micrometeorology/Urban Microclimate, Remote Sensing/ Satellite Meteorology and Climatology, Weather Analysis and Forecasting. The book includes all papers that have been accepted for presentation at the conference.

Intraseasonal Variability in the Atmosphere Ocean Climate System

Author: William K.-M. Lau
Publisher: Springer Science & Business Media
ISBN: 3642139140
Format: PDF, Docs
Download Now
Improving the reliability of long-range forecasts of natural disasters, such as severe weather, droughts and floods, in North America, South America, Africa and the Asian/Australasian monsoon regions is of vital importance to the livelihood of millions of people who are affected by these events. In recent years the significance of major short-term climatic variability, and events such as the El Nino/Southern Oscillation in the Pacific, with its worldwide effect on rainfall patterns, has been all to clearly demonstrated. Understanding and predicting the intra-seasonal variability (ISV) of the ocean and atmosphere is crucial to improving long range environmental forecasts and the reliability of climate change projects through climate models. In the second edition of this classic book on the subject, the authors have updated the original chapters, where appropriate, and added a new chapter that includes short subjects representing substantial new development in ISV research since the publication of the first edition.

Lectures in Meteorology

Author: Nicole Mölders
Publisher: Springer
ISBN: 3319021443
Format: PDF
Download Now
Lectures in Meteorology is a comprehensive reference book for meteorologists and environmental scientists to look up material on the thermodynamics, dynamics and chemistry of the troposphere. The lectures demonstrate how to derive/develop equations – an essential tool for model development. All chapters present applications of the material including numerical models. The lectures are written in modular form, i.e. they can be used at the undergraduate level for classes covered by the chapters or at the graduate level as a comprehensive, intensive course. The student/instructor can address chapters 2 (thermodynamics) and 4 (radiation) in any order. They can also switch the order of chapter 5 (chemistry) and 6 (dynamics). Chapter 7 (climatology and climate) requires an understanding of all chapters. Chapter 3 (cloud physics) needs basics from chapter 2 to understand the cloud microphysical processes. The governing conservation equations for trace constituents, dry air, water substances, total mass, energy, entropy and momentum are presented, including simplifications and their application in models. A brief introduction to atmospheric boundary layer processes is presented as well. Basic principles of climatology discussed include analysis methods, atmospheric waves and their analytical solutions, tropical and extra-tropical cyclones, classical and non-classical mesoscale circulations, and the global circulation. The atmospheric chemistry section encompasses photolytic and gas-phase processes, aqueous chemistry, aerosol processes, fundamentals of biogeochemical cycles and the ozone layer. Solar and terrestrial radiation; major absorber; radiation balance; radiative equilibrium; radiative-convective equilibrium; and basics of molecular, aerosol and cloud adsorption and scattering and their use in remote sensing are also presented.

Studies in the Atmospheric Sciences

Author: Mark L. Berliner
Publisher: Springer Science & Business Media
ISBN: 1461221129
Format: PDF, ePub, Docs
Download Now
The need to understand and predict the processes that influence the Earth's atmosphere is one of the grand scientific challenges for the next century. This volume is a series of case studies and review chapters that cover many of the recent developments in statistical methodology that are useful for interpreting atmospheric data. L. Mark Berliner is Professor of Statistics at Ohio State University.

An Introduction to Global Spectral Modeling

Author: T.N. Krishnamurti
Publisher: Springer Science & Business Media
ISBN: 0387329625
Format: PDF, Docs
Download Now
This is an introductory textbook on global spectral modeling designed for senior-level undergraduates and possibly for first-year graduate students. This text starts with an introduction to elementary finite-difference methods and moves on towards the gradual description of sophisticated dynamical and physical models in spherical coordinates. Computational aspects of the spectral transform method, the planetary boundary layer physics, the physics of precipitation processes in large-scale models, the radiative transfer including effects of diagnostic clouds and diurnal cycle, the surface energy balance over land and ocean, and the treatment of mountains are some issues that are addressed. The topic of model initialization includes the treatment of normal modes and physical processes. A concluding chapter covers the spectral energetics as a diagnostic tool for model evaluation. This revised second edition of the text also includes three additional chapters. Chapter 11 deals with the formulation of a regional spectral model for mesoscale modeling which uses a double Fourier expansion of data and model equations for its transform. Chapter 12 deals with ensemble modeling. This is a new and important area for numerical weather and climate prediction. Finally, yet another new area that has to do with adaptive observational strategies is included as Chapter 13. It foretells where data deficiencies may reside in model from an exploratory ensemble run of experiments and the spread of such forecasts.

Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change

Author: U.C. Mohanty
Publisher: Springer Science & Business Media
ISBN: 9400777205
Format: PDF, ePub, Docs
Download Now
This book deals with recent advances in our understanding and prediction of tropical cyclogenesis, intensification and movement as well as landfall processes like heavy rainfall, gale wind and storm surge based on the latest observational and numerical weather prediction (NWP) modeling platforms. It also includes tropical cyclone (TC) management issues like early warning systems, recent high impact TC events, disaster preparedness, assessment of risk and vulnerability including construction, archiving and retrieval of the best tracking and historical data sets, policy decision etc., in view of recent findings on climate change aspects and their impact on TC activity. The chapters are authored by leading experts, both from research and operational environments. This book is relevant to cyclone forecasters and researchers, managers, policy makers, graduate and undergraduate students. It intends to stimulate thinking and hence further research in the field of TCs and climate change, especially over the Indian Ocean region and provides high-quality reference materials for all the users mentioned above for the management of TCs over this region.

Stratosphere Troposphere Interactions

Author: K. Mohanakumar
Publisher: Springer Science & Business Media
ISBN: 1402082177
Format: PDF, Mobi
Download Now
Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively,and chemically with the upper troposphere,even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratosphere.