Visualization and Verbalization of Data

Author: Jorg Blasius
Publisher: CRC Press
ISBN: 1466589809
Format: PDF, ePub, Mobi
Download Now
Visualization and Verbalization of Data shows how correspondence analysis and related techniques enable the display of data in graphical form, which results in the verbalization of the structures in data. Renowned researchers in the field trace the history of these techniques and cover their current applications. The first part of the book explains the historical origins of correspondence analysis and associated methods. The second part concentrates on the contributions made by the school of Jean-Paul Benzécri and related movements, such as social space and geometric data analysis. Although these topics are viewed from a French perspective, the book makes them understandable to an international audience. Throughout the text, well-known experts illustrate the use of the methods in practice. Examples include the spatial visualization of multivariate data, cluster analysis in computer science, the transformation of a textual data set into numerical data, the use of quantitative and qualitative variables in multiple factor analysis, different possibilities of recoding data prior to visualization, and the application of duality diagram theory to the analysis of a contingency table.

Music Data Analysis

Author: Claus Weihs
Publisher: CRC Press
ISBN: 1315353830
Format: PDF
Download Now
This book provides a comprehensive overview of music data analysis, from introductory material to advanced concepts. It covers various applications including transcription and segmentation as well as chord and harmony, instrument and tempo recognition. It also discusses the implementation aspects of music data analysis such as architecture, user interface and hardware. It is ideal for use in university classes with an interest in music data analysis. It also could be used in computer science and statistics as well as musicology.

Exploratory Data Analysis with MATLAB Third Edition

Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1315349841
Format: PDF
Download Now
Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data

Correspondence Analysis in Practice Third Edition

Author: Michael Greenacre
Publisher: CRC Press
ISBN: 1315352958
Format: PDF
Download Now
Drawing on the author’s 45 years of experience in multivariate analysis, Correspondence Analysis in Practice, Third Edition, shows how the versatile method of correspondence analysis (CA) can be used for data visualization in a wide variety of situations. CA and its variants, subset CA, multiple CA and joint CA, translate two-way and multi-way tables into more readable graphical forms — ideal for applications in the social, environmental and health sciences, as well as marketing, economics, linguistics, archaeology, and more. Michael Greenacre is Professor of Statistics at the Universitat Pompeu Fabra, Barcelona, Spain, where he teaches a course, amongst others, on Data Visualization. He has authored and co-edited nine books and 80 journal articles and book chapters, mostly on correspondence analysis, the latest being Visualization and Verbalization of Data in 2015. He has given short courses in fifteen countries to environmental scientists, sociologists, data scientists and marketing professionals, and has specialized in statistics in ecology and social science.

R for Statistics

Author: Pierre-Andre Cornillon
Publisher: CRC Press
ISBN: 1439881456
Format: PDF, ePub, Docs
Download Now
Although there are currently a wide variety of software packages suitable for the modern statistician, R has the triple advantage of being comprehensive, widespread, and free. Published in 2008, the second edition of Statistiques avec R enjoyed great success as an R guidebook in the French-speaking world. Translated and updated, R for Statistics includes a number of expanded and additional worked examples. Organized into two sections, the book focuses first on the R software, then on the implementation of traditional statistical methods with R. Focusing on the R software, the first section covers: Basic elements of the R software and data processing Clear, concise visualization of results, using simple and complex graphs Programming basics: pre-defined and user-created functions The second section of the book presents R methods for a wide range of traditional statistical data processing techniques, including: Regression methods Analyses of variance and covariance Classification methods Exploratory multivariate analysis Clustering methods Hypothesis tests After a short presentation of the method, the book explicitly details the R command lines and gives commented results. Accessible to novices and experts alike, R for Statistics is a clear and enjoyable resource for any scientist. Datasets and all the results described in this book are available on the book’s webpage at http://www.agrocampus-ouest.fr/math/RforStat

Exploratory Multivariate Analysis by Example Using R Second Edition

Author: Francois Husson
Publisher: CRC Press
ISBN: 1315301865
Format: PDF, Kindle
Download Now
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis. The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualising objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods using examples from various fields, with related R code accessible in the FactoMineR package developed by the authors. The book has been written using minimal mathematics so as to appeal to applied statisticians, as well as researchers from various disciplines, including medical research and the social sciences. Readers can use the theory, examples, and software presented in this book in order to be fully equipped to tackle real-life multivariate data.

Bayesian Artificial Intelligence Second Edition

Author: Kevin B. Korb
Publisher: CRC Press
ISBN: 1439815925
Format: PDF
Download Now
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology. New to the Second Edition New chapter on Bayesian network classifiers New section on object-oriented Bayesian networks New section that addresses foundational problems with causal discovery and Markov blanket discovery New section that covers methods of evaluating causal discovery programs Discussions of many common modeling errors New applications and case studies More coverage on the uses of causal interventions to understand and reason with causal Bayesian networks Illustrated with real case studies, the second edition of this bestseller continues to cover the groundwork of Bayesian networks. It presents the elements of Bayesian network technology, automated causal discovery, and learning probabilities from data and shows how to employ these technologies to develop probabilistic expert systems. Web Resource The book’s website at www.csse.monash.edu.au/bai/book/book.html offers a variety of supplemental materials, including example Bayesian networks and data sets. Instructors can email the authors for sample solutions to many of the problems in the text.

The Semantic Web Semantics and Big Data

Author: Philipp Cimiano
Publisher: Springer
ISBN: 3642382886
Format: PDF, ePub, Docs
Download Now
This book constitutes the refereed proceedings of the 10th Extended Semantic Web Conference, ESWC 2013, held in Montpellier, France, in May 2013. The 42 revised full papers presented together with three invited talks were carefully reviewed and selected from 162 submissions. They are organized in tracks on ontologies; linked open data; semantic data management; mobile Web, sensors and semantic streams; reasoning; natural language processing and information retrieval; machine learning; social Web and Web science; cognition and semantic Web; and in-use and industrial tracks. The book also includes 17 PhD papers presented at the PhD Symposium.

Bayesian Cognitive Modeling

Author: Michael D. Lee
Publisher: Cambridge University Press
ISBN: 1107018455
Format: PDF, ePub, Mobi
Download Now
Using a practical, hands-on approach, this book will teach anyone how to carry out Bayesian analyses and interpret the results.

Human Computer Interaction Interaction Modalities and Techniques

Author: Masaaki Kurosu
Publisher: Springer
ISBN: 3642393306
Format: PDF, ePub, Mobi
Download Now
The five-volume set LNCS 8004--8008 constitutes the refereed proceedings of the 15th International Conference on Human-Computer Interaction, HCII 2013, held in Las Vegas, NV, USA in July 2013. The total of 1666 papers and 303 posters presented at the HCII 2013 conferences was carefully reviewed and selected from 5210 submissions. These papers address the latest research and development efforts and highlight the human aspects of design and use of computing systems. The papers accepted for presentation thoroughly cover the entire field of human-computer interaction, addressing major advances in knowledge and effective use of computers in a variety of application areas. This volume contains papers in the thematic area of human-computer interaction, addressing the following major topics: speech, natural language and auditory interfaces; gesture and eye-gaze based Interaction; touch-based interaction; haptic interaction; graphical user interfaces and visualisation.