Writing Compilers and Interpreters

Author: Ronald Mak
Publisher: John Wiley & Sons
ISBN: 1118079736
Format: PDF, ePub
Download Now
Long-awaited revision to a unique guide that covers both compilers and interpreters Revised, updated, and now focusing on Java instead of C++, this long-awaited, latest edition of this popular book teaches programmers and software engineering students how to write compilers and interpreters using Java. You?ll write compilers and interpreters as case studies, generating general assembly code for a Java Virtual Machine that takes advantage of the Java Collections Framework to shorten and simplify the code. In addition, coverage includes Java Collections Framework, UML modeling, object-oriented programming with design patterns, working with XML intermediate code, and more.

Writing compilers and interpreters

Author: Ronald Mak
Publisher: John Wiley & Sons Incorporated
ISBN: 9780471509684
Format: PDF, Kindle
Download Now
Here's a real-world reference on compiler design that treats the topic as a set of practical skills rather than a body of theory. For practicing programmers wishing to master the design and implementation of compilers, interpreters and their associated utilities, Ronald Mak offers step-by-step guidelines for every aspect of development.

Introduction to Compiler Construction in a Java World

Author: Bill Campbell
Publisher: CRC Press
ISBN: 1482215071
Format: PDF, Mobi
Download Now
Immersing students in Java and the Java Virtual Machine (JVM), Introduction to Compiler Construction in a Java World enables a deep understanding of the Java programming language and its implementation. The text focuses on design, organization, and testing, helping students learn good software engineering skills and become better programmers. The book covers all of the standard compiler topics, including lexical analysis, parsing, abstract syntax trees, semantic analysis, code generation, and register allocation. The authors also demonstrate how JVM code can be translated to a register machine, specifically the MIPS architecture. In addition, they discuss recent strategies, such as just-in-time compiling and hotspot compiling, and present an overview of leading commercial compilers. Each chapter includes a mix of written exercises and programming projects. By working with and extending a real, functional compiler, students develop a hands-on appreciation of how compilers work, how to write compilers, and how the Java language behaves. They also get invaluable practice working with a non-trivial Java program of more than 30,000 lines of code. Fully documented Java code for the compiler is accessible at http://www.cs.umb.edu/j--/

Modern Compiler Design

Author: Dick Grune
Publisher: Springer Science & Business Media
ISBN: 1461446996
Format: PDF
Download Now
"Modern Compiler Design" makes the topic of compiler design more accessible by focusing on principles and techniques of wide application. By carefully distinguishing between the essential (material that has a high chance of being useful) and the incidental (material that will be of benefit only in exceptional cases) much useful information was packed in this comprehensive volume. The student who has finished this book can expect to understand the workings of and add to a language processor for each of the modern paradigms, and be able to read the literature on how to proceed. The first provides a firm basis, the second potential for growth.

Engineering a Compiler

Author: Keith Cooper
Publisher: Elsevier
ISBN: 9780080916613
Format: PDF, ePub, Mobi
Download Now
This entirely revised second edition of Engineering a Compiler is full of technical updates and new material covering the latest developments in compiler technology. In this comprehensive text you will learn important techniques for constructing a modern compiler. Leading educators and researchers Keith Cooper and Linda Torczon combine basic principles with pragmatic insights from their experience building state-of-the-art compilers. They will help you fully understand important techniques such as compilation of imperative and object-oriented languages, construction of static single assignment forms, instruction scheduling, and graph-coloring register allocation. In-depth treatment of algorithms and techniques used in the front end of a modern compiler Focus on code optimization and code generation, the primary areas of recent research and development Improvements in presentation including conceptual overviews for each chapter, summaries and review questions for sections, and prominent placement of definitions for new terms Examples drawn from several different programming languages

Implementing Programming Languages

Author: Aarne Ranta
Publisher:
ISBN: 9781848900646
Format: PDF
Download Now
Implementing a programming language means bridging the gap from the programmer's high-level thinking to the machine's zeros and ones. If this is done in an efficient and reliable way, programmers can concentrate on the actual problems they have to solve, rather than on the details of machines. But understanding the whole chain from languages to machines is still an essential part of the training of any serious programmer. It will result in a more competent programmer, who will moreover be able to develop new languages. A new language is often the best way to solve a problem, and less difficult than it may sound. This book follows a theory-based practical approach, where theoretical models serve as blueprint for actual coding. The reader is guided to build compilers and interpreters in a well-understood and scalable way. The solutions are moreover portable to different implementation languages. Much of the actual code is automatically generated from a grammar of the language, by using the BNF Converter tool. The rest can be written in Haskell or Java, for which the book gives detailed guidance, but with some adaptation also in C, C++, C#, or OCaml, which are supported by the BNF Converter. The main focus of the book is on standard imperative and functional languages: a subset of C++ and a subset of Haskell are the source languages, and Java Virtual Machine is the main target. Simple Intel x86 native code compilation is shown to complete the chain from language to machine. The last chapter leaves the standard paths and explores the space of language design ranging from minimal Turing-complete languages to human-computer interaction in natural language.

Compiler construction for digital computers

Author: David Gries
Publisher: John Wiley & Sons
ISBN:
Format: PDF, ePub, Docs
Download Now
Describes the techniques involved in writing compilers for high-level languages such as FORTRAN or PL/1. Treats both theory and practical aspects of compiler writing. Discusses semantic routines, their purposes and their connection to syntax recognition.

Building Parsers with Java

Author: Steven John Metsker
Publisher: Addison-Wesley Professional
ISBN: 9780201719628
Format: PDF, Kindle
Download Now
CD-ROM contains: Examples from text -- Parser toolkit -- Example programs.

Compiler Design

Author: Reinhard Wilhelm
Publisher: Springer Science & Business Media
ISBN: 9783642149092
Format: PDF, Docs
Download Now
While compilers for high-level programming languages are large complex software systems, they have particular characteristics that differentiate them from other software systems. Their functionality is almost completely well-defined – ideally there exist complete precise descriptions of the source and target languages, while additional descriptions of the interfaces to the operating system, programming system and programming environment, and to other compilers and libraries are often available. The implementation of application systems directly in machine language is both difficult and error-prone, leading to programs that become obsolete as quickly as the computers for which they were developed. With the development of higher-level machine-independent programming languages came the need to offer compilers that were able to translate programs into machine language. Given this basic challenge, the different subtasks of compilation have been the subject of intensive research since the 1950s. This book is not intended to be a cookbook for compilers, instead the authors' presentation reflects the special characteristics of compiler design, especially the existence of precise specifications of the subtasks. They invest effort to understand these precisely and to provide adequate concepts for their systematic treatment. This is the first book in a multivolume set, and here the authors describe what a compiler does, i.e., what correspondence it establishes between a source and a target program. To achieve this the authors specify a suitable virtual machine (abstract machine) and exactly describe the compilation of programs of each source language into the language of the associated virtual machine for an imperative, functional, logic and object-oriented programming language. This book is intended for students of computer science. Knowledge of at least one imperative programming language is assumed, while for the chapters on the translation of functional and logic programming languages it would be helpful to know a modern functional language and Prolog. The book is supported throughout with examples, exercises and program fragments.